Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chondroitinase ABC promotes functional recovery after spinal cord injury

Abstract

The inability of axons to regenerate after a spinal cord injury in the adult mammalian central nervous system (CNS) can lead to permanent paralysis. At sites of CNS injury, a glial scar develops, containing extracellular matrix molecules including chondroitin sulphate proteoglycans (CSPGs)1,2. CSPGs are inhibitory to axon growth in vitro3,4,5, and regenerating axons stop at CSPG-rich regions in vivo6. Removing CSPG glycosaminoglycan (GAG) chains attenuates CSPG inhibitory activity7,8,9,10. To test the functional effects of degrading chondroitin sulphate (CS)-GAG after spinal cord injury, we delivered chondroitinase ABC (ChABC) to the lesioned dorsal columns of adult rats. We show that intrathecal treatment with ChABC degraded CS-GAG at the injury site, upregulated a regeneration-associated protein in injured neurons, and promoted regeneration of both ascending sensory projections and descending corticospinal tract axons. ChABC treatment also restored post-synaptic activity below the lesion after electrical stimulation of corticospinal neurons, and promoted functional recovery of locomotor and proprioceptive behaviours. Our results demonstrate that CSPGs are important inhibitory molecules in vivo and suggest that their manipulation will be useful for treatment of human spinal injuries.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ChABC degrades CS-GAG in vivo.
Figure 2: ChABC induces upregulation of GAP-43 in lesioned DRG neurons and regeneration of dorsal column axons.
Figure 3: ChABC promotes regeneration of corticospinal tract axons.
Figure 4: ChABC restores functional connections of descending motor pathways.
Figure 5: Functional recovery after ChABC treatment.

Similar content being viewed by others

References

  1. Fawcett, J. W. & Asher, R. A. The glial scar and central nervous system repair. Brain Res. Bull. 49, 377–391 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Fitch, M. T. & Silver, J. CNS Regeneration: Basic Science and Clinical Advances (eds Tuszynski, M. H. & Kordower, J. H.) 55–88 (Academic, San Diego, 1999).

    Book  Google Scholar 

  3. McKeon, R. J., Schreiber, R. C., Rudge, J. S. & Silver, J. Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes. J. Neurosci. 11, 3398–3411 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith-Thomas, L. C. et al. An inhibitor of neurite outgrowth produced by astrocytes. J. Cell Sci. 107, 1687–1695 (1994).

    CAS  PubMed  Google Scholar 

  5. Niederost, B. P., Zimmermann, D. R., Schwab, M. E. & Bandtlow, C. E. Bovine CNS myelin contains neurite growth-inhibitory activity associated with chondroitin sulfate proteoglycans. J. Neurosci. 19, 8979–8989 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Davies, S. J., Goucher, D. R., Doller, C. & Silver, J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J. Neurosci. 19, 5810–5822 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McKeon, R. J., Hoke, A. & Silver, J. Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp. Neurol. 136, 32–43 (1995).

    Article  CAS  PubMed  Google Scholar 

  8. Zuo, J., Neubauer, D., Dyess, K., Ferguson, T. A. & Muir, D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154, 654–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Fidler, P. S. et al. Comparing astrocytic cell lines that are inhibitory or permissive for axon growth: the major axon-inhibitory proteoglycan is NG2. J. Neurosci. 19, 8778–8788 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Moon, L. D., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nature Neurosci. 4, 465–466 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Chong, M. S. et al. GAP-43 expression in primary sensory neurons following central axotomy. J. Neurosci. 14, 4375–4384 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bradbury, E. J., McMahon, S. B. & Ramer, M. S. Keeping in touch: sensory neurone regeneration in the CNS. Trends Pharmacol. Sci. 21, 389–394 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Mori, M., Kose, A., Tsujino, T. & Tanaka, C. Immunocytochemical localization of protein kinase C subspecies in the rat spinal cord: light and electron microscopic study. J. Comp Neurol. 299, 167–177 (1990).

    Article  CAS  PubMed  Google Scholar 

  14. Hill, C. E., Beattie, M. S. & Bresnahan, J. C. Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp. Neurol. 171, 153–169 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Wall, P. D. & Lidierth, M. Five sources of a dorsal root potential: their interactions and origins in the superficial dorsal horn. J. Neurophysiol. 78, 860–871 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Ramer, M. S., Priestley, J. V. & McMahon, S. B. Functional regeneration of sensory axons into the adult spinal cord. Nature 403, 312–316 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Murray, M. Strategies and mechanisms of recovery after spinal cord injury. Adv. Neurol. 72, 219–225 (1997).

    CAS  PubMed  Google Scholar 

  18. Levine, J. M. Increased expression of the NG2 chondroitin-sulfate proteoglycan after brain injury. J. Neurosci. 14, 4716–4730 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. McKeon, R. J., Jurynec, M. J. & Buck, C. R. The chondroitin sulfate proteoglycans neurocan and phosphacan are expressed by reactive astrocytes in the chronic CNS glial scar. J. Neurosci. 19, 10778–10788 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Asher, R. A. et al. Neurocan is upregulated in injured brain and in cytokine-treated astrocytes. J. Neurosci. 20, 2427–2438 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Plant, G. W., Bates, M. L. & Bunge, M. B. Inhibitory proteoglycan immunoreactivity is higher at the caudal than the rostral Schwann cell graft-transected spinal cord interface. Mol. Cell Neurosci. 17, 471–487 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Bregman, B. S. et al. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 378, 498–501 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Pasterkamp, R. J., Anderson, P. N. & Verhaagen, J. Peripheral nerve injury fails to induce growth of lesioned ascending dorsal column axons into spinal cord scar tissue expressing the axon repellent Semaphorin3A. Eur. J. Neurosci. 13, 457–471 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Thallmair, M. et al. Neurite growth inhibitors restrict plasticity and functional recovery following corticospinal tract lesions. Nature Neurosci. 1, 124–131 (1998).

    Article  CAS  PubMed  Google Scholar 

  25. Ramer, M. S., Harper, G. P. & Bradbury, E. J. Progress in spinal cord research—a refined strategy for the International Spinal Research Trust. Spinal Cord 38, 449–472 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Fouad, K., Dietz, V. & Schwab, M. E. Improving axonal growth and functional recovery after experimental spinal cord injury by neutralizing myelin associated inhibitors. Brain Res. Brain Res. Rev. 36, 204–212 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. Jones, L. L., Oudega, M., Bunge, M. B. & Tuszynski, M. H. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J. Physiol. 533, 83–89 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Murray, M. & Fischer, I. Transplantation and gene therapy: combined approaches for repair of spinal cord injury. Neuroscientist 7, 28–41 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Bradbury, E. J. et al. NT-3 promotes growth of lesioned adult rat sensory axons ascending in the dorsal columns of the spinal cord. Eur. J. Neurosci. 11, 3873–3883 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kunkel-Bagden, E., Dai, H. N. & Bregman, B. S. Methods to assess the development and recovery of locomotor function after spinal cord injury in rats. Exp. Neurol. 119, 153–164 (1993).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. J. Boucher for critical review of the manuscript and J. V. Priestley, M. Lidierth, B. J. Kerr and M. S. Ramer for their help. This work was supported by The Wellcome Trust, MRC, International Spinal Research Trust and Action Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth J. Bradbury.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradbury, E., Moon, L., Popat, R. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002). https://doi.org/10.1038/416636a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416636a

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing