Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs

Abstract

Natural hydrocarbons are largely formed by the thermal decomposition of organic matter (thermogenesis) or by microbial processes (bacteriogenesis). But the discovery of methane at an East Pacific Rise hydrothermal vent1 and in other crustal fluids supports the occurrence of an abiogenic source of hydrocarbons2,3,4. These abiogenic hydrocarbons are generally formed by the reduction of carbon dioxide, a process which is thought to occur during magma cooling5 and—more commonly—in hydrothermal systems during water–rock interactions, for example involving Fischer–Tropsch reactions and the serpentinization of ultramafic rocks6,7,8,9,10. Suggestions that abiogenic hydrocarbons make a significant contribution to economic hydrocarbon reservoirs2 have been difficult to resolve, in part owing to uncertainty in the carbon isotopic signatures for abiogenic versus thermogenic hydrocarbons4,10. Here, using carbon and hydrogen isotope analyses of abiogenic methane and higher hydrocarbons in crystalline rocks of the Canadian shield, we show a clear distinction between abiogenic and thermogenic hydrocarbons. The progressive isotopic trends for the series of C1–C4 alkanes indicate that hydrocarbon formation occurs by way of polymerization of methane precursors. Given that these trends are not observed in the isotopic signatures of economic gas reservoirs, we can now rule out the presence of a globally significant abiogenic source of hydrocarbons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plot of δ13C values of individual n-alkanes against carbon number for gas samples from Kidd Creek mine, and for thermogenic gases from southwest Ontario natural-gas fields29.
Figure 2: Plot of δ13C values of individual n-alkanes against carbon number.
Figure 3: Plot of δ13C versus δ2H values for C1–C4 for the Kidd Creek samples, and for thermogenic gases from southwest Ontario natural-gas fields29.

Similar content being viewed by others

References

  1. Welhan, J. A. & Craig, H. Methane and hydrogen in East Pacific Rise hydrothermal fluids. Geol. Res. Lett. 6, 829–831 (1979).

    Article  ADS  CAS  Google Scholar 

  2. Gold, T. Terrestrial sources of carbon and earthquake outgassing. J. Petrol. Geol. 1, 1–19 (1979).

    Article  Google Scholar 

  3. Shock, E L. An open or shut case? Nature 378, 338–339 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Jenden, P. D., Hilton, D. R., Kaplan, I. R. & Craig, H. in The Future of Energy Gases (ed. Howell, D.) 31–56 (Professional Paper 1570, US Geological Survey, 1993).

    Google Scholar 

  5. Kelley, D. S. Methane-rich fluids in the oceanic crust. J. Geophys. Res. 101, 2943–2962 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Berndt, M. E., Allen, D. E. & Seyfried, W. E. J. Reduction of CO2 during serpentinization of olivine at 300C and 500 bar. Geology 24, 351–354 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Abrajano, T. A. et al. Geochemistry of reduced gas related to serpentinization of the Zambales ophiolite, Philippines. Appl. Geochem. 5, 625–630 (1990).

    Article  Google Scholar 

  8. Vanko, D. A. & Stakes, D. S. Fluids in oceanic layer 3: evidence from veined rocks, hole 735B, Southwest Indian Ridge. Proc. ODP Sci. Res. 118, 181–215 (1991).

    CAS  Google Scholar 

  9. Charlou, J. L. & Donval, J. P. Hydrothermal methane venting between 12N and 26N along the Mid-Atlantic ridge. J. Geophys. Res. 98, 9625–9642 (1993).

    Article  ADS  CAS  Google Scholar 

  10. Horita, J. & Berndt, M. E. Abiogenic methane formation and isotopic fractionation under hydrothermal conditions. Science 285, 1055–1057 (1999).

    Article  CAS  Google Scholar 

  11. Sherwood Lollar, B. et al. Abiogenic methanogenesis in crystalline rocks. Geochim. Cosmochim. Acta 57, 5087–5097 (1993).

    Article  ADS  Google Scholar 

  12. Yuen, G. U. et al. Carbon isotope fractionation in Fischer-Tropsch type reactions. Lunar Planet. Sci. Conf. XXI, 1367–1368 (1990).

    ADS  Google Scholar 

  13. Hu, G., Ouyang, Z., Wang, X. & Wen, Q. Carbon isotopic fractionation in the process of Fischer-Tropsch reaction in primitive solar nebula. Sci. China 41, 202–207 (1998).

    Article  CAS  Google Scholar 

  14. Des Marais, D. J., Donchin, J. H., Nehring, N. L. & Truesdell, A. H. Molecular carbon isotopic evidence for the origin of geothermal hydrocarbons. Nature 292, 826–828 (1981).

    Article  ADS  CAS  Google Scholar 

  15. James, A. T. Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components. Am. Assoc. Petrol. Geol. Bull. 67, 1176–1191 (1983).

    CAS  Google Scholar 

  16. Schoell, M. Genetic characterization of natural gases. Am. Assoc. Petrol. Geol. Bull. 67, 2225–2238 (1983).

    CAS  Google Scholar 

  17. Pernaton, E., Prinzhofer, A. & Schneider, F. Reconsideration of methane isotope signature as a criterion for the genesis of natural gas. Revue Inst. Francais Petrole 51, 635–651 (1996).

    Article  CAS  Google Scholar 

  18. Doig, F. Bacterial Methanogenesis in Canadian Shield Groundwaters. Thesis, Univ. Toronto (1994).

    Google Scholar 

  19. Doig, F., Sherwood Lollar, B. & Ferris, F. G. Microbial communities in deep Canadian Shield groundwaters—An in situ biofilm experiment. Geomicrobiol. J. 13, 91–102 (1995).

    Article  Google Scholar 

  20. Khitarov, N. I. et al. Free emanation gases of the Khibiny massif. Sov. Geol. 2, 62–73 (1979), (In Russian).

    Google Scholar 

  21. Konnerup-Madsen, J., Kreulen, R. & Rose-Hansen, J. Stable isotope characteristics of hydrocarbon gases in the alkaline Ilimaussaq complex, south Greenland. Bull. Mineral. 106, 642–653 (1988).

    Google Scholar 

  22. Laier, T. & Nytoft, H. P. in Proc. 17th Int. Meeting on Organic Geochemistry (eds Grimalt, J. O. & Dorronsoro, C.) 1109–1111 (European Association of Organic Geochemists, San Sabastian, Spain, 1995).

    Google Scholar 

  23. Yuen, G., Blair, N., DesMarais, D. J. & Chang, S. Carbon isotope composition of low molecular weight hydrocarbons and monocarboxylic acids from Murchison meteorite. Nature 307, 252–254 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Lancet, H. S. & Anders, E. Carbon isotope fractionation in the Fischer-Tropsch synthesis of methane. Science 170, 980–982 (1970).

    Article  ADS  CAS  Google Scholar 

  25. Giardini, A. A. & Salotti, C. A. Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen. Science 159, 317–319 (1968).

    Article  ADS  CAS  Google Scholar 

  26. Holloway, J. R. Graphite-CH4-H2O-CO2 equilibria at low grade metamorphic conditions. Geology 12, 455–458 (1984).

    Article  ADS  CAS  Google Scholar 

  27. McCollum, T. M. & Seewald, J. S. A reassessment of the potential for reduction of dissolved CO2 to hydrocarbons during serpentinization of olivine. Geochim. Cosmochim. Acta 65, 3769–3778 (2001).

    Article  ADS  Google Scholar 

  28. Bleeker, W. & Parrish, R. R. Stratigraphy nd U-Pb zircon geochronology of Kidd Creek: Implications for the formation of giant volcanogenic massive sulphite deposits and the tectonic history of the Abitibi greenstone belt. Can. J. Earth Sci. 3, 1213–1231 (1996).

    Article  Google Scholar 

  29. Sherwood Lollar, B., Weise, S. M., Frape, S. K. & Barker, J. F. Isotopic constraints on the migration of hydrocarbon and helium gases of southwestern Ontario. Bull. Can. Petrol. Geol. 42, 283–295 (1994).

    Google Scholar 

  30. Westgate, T. D. Compositional and Carbon Isotopic Characteristics of Abiogenically-derived Hydrocarbons at Kidd Creek Mine, Timmins, Ontario. Thesis, Univ. Toronto (1998).

    Google Scholar 

Download references

Acknowledgements

This study was supported in part by Falconbridge Mining Ltd and by the Natural Sciences and Engineering Research Council of Canada. We thank N. Arner and N. VanStone, and the Geology Office at Kidd Creek mine (P. Olson, A. Coutts, R. Cook) for providing geological information and assistance with underground field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Sherwood Lollar.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherwood Lollar, B., Westgate, T., Ward, J. et al. Abiogenic formation of alkanes in the Earth's crust as a minor source for global hydrocarbon reservoirs. Nature 416, 522–524 (2002). https://doi.org/10.1038/416522a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416522a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing