Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets

Abstract

Various present and future specialized applications of magnets require monodisperse, small magnetic particles, and the discovery of molecules that can function as nanoscale magnets was an important development in this regard1,2,3. These molecules act as single-domain magnetic particles that, below their blocking temperature, exhibit magnetization hysteresis, a classical property of macroscopic magnets. Such ‘single-molecule magnets’ (SMMs)4 straddle the interface between classical and quantum mechanical behaviour because they also display quantum tunnelling of magnetization5,6 and quantum phase interference7. Quantum tunnelling of magnetization can be advantageous for some potential applications of SMMs, for example, in providing the quantum superposition of states required for quantum computing8. However, it is a disadvantage in other applications, such as information storage, where it would lead to information loss. Thus it is important to both understand and control the quantum properties of SMMs. Here we report a supramolecular SMM dimer in which antiferromagnetic coupling between the two components results in quantum behaviour different from that of the individual SMMs. Our experimental observations and theoretical analysis suggest a means of tuning the quantum tunnelling of magnetization in SMMs. This system may also prove useful for studying quantum tunnelling of relevance to mesoscopic antiferromagnets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the [Mn4O3Cl4(O2CEt)3(py)3]2 dimer, denoted [Mn4]2.
Figure 2: Magnetization (M) of [Mn4]2 (plotted as fraction of maximum value Ms) versus applied magnetic field (μ0H).
Figure 3: The spin state energies of [Mn4]2 as a function of applied magnetic field.
Figure 4: Derivative of the hysteresis loop at 0.04 K (Fig. 2b) and at different field sweep rates.

Similar content being viewed by others

References

  1. Sessoli, R. et al. High-spin molecules: [Mn12O12(O2CR)16(H2O)4]. J. Am. Chem. Soc. 115, 1804–1816 (1993).

    Article  CAS  Google Scholar 

  2. Sessoli, R., Gatteschi, D., Caneschi, A. & Novak, M. A. Magnetic bistability in a metal-ion cluster. Nature 365, 141–143 (1993).

    Article  ADS  CAS  Google Scholar 

  3. Christou, G., Gatteschi, D., Hendrickson, D. N. & Sessoli, R. Single-molecule magnets. MRS Bull.. 25, 66–71 (2000).

    Article  CAS  Google Scholar 

  4. Aubin, S. M. J. et al. Distorted MnIVMnIII3 cubane complexes as single-molecule magnets. J. Am. Chem. Soc. 118, 7746–7754 (1996).

    Article  CAS  Google Scholar 

  5. Friedman, J. R., Sarachik, M. P., Tejada, J. & Ziolo, R. Macroscopic measurement of resonant magnetization tunnelling in high-spin molecules. Phys. Rev. Lett. 76, 3830–3833 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Thomas, L. et al. Macroscopic quantum tunneling of magnetization in a single crystal of nanomagnets. Nature 383, 145–147 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Wernsdorfer, W. & Sessoli, R. Quantum phase interference and parity effects in magnetic molecular clusters. Science 284, 133–135 (1999).

    Article  ADS  CAS  Google Scholar 

  8. Leuenberger, M. N. & Loss, D. Quantum computing in molecular magnets. Nature 410, 789–793 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Hendrickson, D. N. et al. Photosynthetic water oxidation center: spin frustration in distorted cubane MnIVMnIII3 model complexes. J. Am. Chem. Soc. 114, 2455–2471 (1992).

    Article  CAS  Google Scholar 

  10. Desiraju, G. R. The C–H˙˙˙O hydrogen bond: structural implications and supramolecular design. Acc. Chem. Res. 29, 441–449 (1996).

    Article  CAS  Google Scholar 

  11. Freytag, M. & Jones, P. G. Hydrogen bonds C–H˙˙˙Cl as a structure-determining factor in the gold(I) complex bis(3-bromopyridine)gold(I) dichloroaurate(I). Chem. Commun. 277–278 (2000).

  12. Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. & Orpen, A. G. Metal-bound chlorine often accepts hydrogen bonds. Chem. Commun. 653–654 (1998).

  13. Raymo, F. M., Bartberger, M. D., Houk, K. N. & Stoddart, J. F. The magnitude of [C–H˙˙˙O] hydrogen bonding in molecular and supramolecular assemblies. J. Am. Chem. Soc. 123, 9264–9267 (2001).

    Article  CAS  Google Scholar 

  14. Jeffrey, G. A. & Saenger, W. Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991).

    Book  Google Scholar 

  15. Desiraju, G. R. Crystal Engineering: the Design of Organic Solids (Elsevier, Amsterdam, 1989).

    Google Scholar 

  16. Jones, P. G. & Ahrens, B. Bis(diphenylphosphino)methane and related ligands as hydrogen bond donors. Chem. Commun. 2307–2308 (1998).

  17. Xu, C. et al. Synthesis, molecular structures and fluxional behavior of dppm-bridged complexes of platinum(II) with linear gold(I), trigonal silver(I), or tetrahedral mercury(II) centers. Organometallics 15, 3972–3979 (1996).

    Article  CAS  Google Scholar 

  18. Wemple, M. W., Tsai, H.-L., Folting, K., Hendrickson, D. N. & Christou, G. Distorted cubane [Mn4O3Cl]6+ complexes with arenecarboxylate ligation: crystallographic, magnetochemical and spectroscopic characterization. Inorg. Chem. 32, 2025–2031 (1993).

    Article  CAS  Google Scholar 

  19. Carlin, R. L. Magnetochemistry (Springer, Berlin, 1986).

    Book  Google Scholar 

  20. Wernsdorfer, W. Classical and quantum magnetization reversal studies in nanometer-sized particles and clusters. Adv. Chem. Phys. 118, 99–190 (2001).

    CAS  Google Scholar 

  21. Sangregorio, C. et al. Quantum tunnelling of the magnetization in an iron cluster nanomagnet. Phys. Rev. Lett. 78, 4645–4648 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Aubin, S. M. J. et al. Half-integer-spin, single-molecule magnet exhibiting resonant magnetization tunnelling. J. Am. Chem. Soc. 120, 839–840 (1998).

    Article  CAS  Google Scholar 

  23. Aubin, S. M. J. et al. Resonant magnetization tunnelling in the trigonal pyramidal MnIVMnIII3 complex [Mn4O3Cl(O2CMe)3(dbm)3]. J. Am. Chem. Soc. 120, 4991–5004 (1998).

    Article  CAS  Google Scholar 

  24. Aubin, S. M. J. et al. Resonant magnetization tunnelling in the half-integer-spin single-molecular magnet [PPh4][Mn12O12(O2CEt)16(H2O)4]. Chem. Commun. 803–804 (1998).

  25. Boskovic, C., Pink, M., Huffman, J. C., Hendrickson, D. N. & Christou, G. Single-molecule magnets: ligand-induced core distortion and multiple Jahn–Teller isomerism in [Mn12O12(OAc)8(O2PPh2)8(H2O)4]. J. Am. Chem. Soc. 123, 9914–9915 (2001).

    Article  CAS  Google Scholar 

  26. Andres, H. et al. Inelastic neutron scattering and magnetic susceptibilities of the single-molecule magnets [Mn4O3X(OAc)3(dbm)3 (X=Br, Cl, OAc, and F): variation of the anisotropy along the series. J. Am. Chem. Soc. 122, 12469–12477 (2000).

    Article  CAS  Google Scholar 

  27. Barbara, B. & Chudnovsky, E. M. Macroscopic quantum tunneling in antiferromagnets. Phys. Lett. A 145, 205–208 (1990).

    Article  ADS  Google Scholar 

  28. Awschalom, D. D., Smyth, J. F., Grinstein, G., DiVincenzo, D. P. & Loss, D. Macroscopic quantum tunneling in magnetic proteins. Phys. Rev. Lett. 68, 3092–3095 (1992).

    Article  ADS  CAS  Google Scholar 

  29. Gider, S., Awschalom, D. D., Douglas, T., Mann, S. & Chaparala, M. Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science 268, 77–80 (1995).

    Article  ADS  CAS  Google Scholar 

  30. Tejada, J. et al. Does macroscopic quantum coherence occur in ferritin? Science 272, 424–426 (1996).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the US National Science Foundation for support. We also thank A. Benoit, D. Mailly and C. Thirion for help in the development of the micro-SQUID technique, and B. Barbara for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Christou.

Ethics declarations

Competing interests

The authors declare that they have no competing financial interests

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wernsdorfer, W., Aliaga-Alcalde, N., Hendrickson, D. et al. Exchange-biased quantum tunnelling in a supramolecular dimer of single-molecule magnets. Nature 416, 406–409 (2002). https://doi.org/10.1038/416406a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416406a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing