Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An ordered mesoporous organosilica hybrid material with a crystal-like wall structure

Abstract

Surfactant-mediated synthesis strategies are widely used to fabricate ordered mesoporous solids1,2,3,4,5,6 in the form of metal oxides7, metals8, carbon9 and hybrid organosilicas10,11,12,13,14. These materials have amorphous pore walls, which could limit their practical utility. In the case of mesoporous metal oxides, efforts to crystallize the framework structure by thermal15,16 and hydrothermal treatments17 have resulted in crystallization of only a fraction of the pore walls. Here we report the surfactant-mediated synthesis of an ordered benzene–silica hybrid material; this material has an hexagonal array of mesopores with a lattice constant of 52.5 Å, and crystal-like pore walls that exhibit structural periodicity with a spacing of 7.6 Å along the channel direction. The periodic pore surface structure results from alternating hydrophilic and hydrophobic layers, composed of silica and benzene, respectively. We believe that this material is formed as a result of structure-directing interactions between the benzene–silica precursor molecules, and between the precursor molecules and the surfactants. We expect that other organosilicas and organo-metal oxides can be produced in a similar fashion, to yield a range of hierarchically ordered mesoporous solids with molecular-scale pore surface periodicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Powder X-ray diffraction patterns of mesoporous benzene–silicas.
Figure 2: TEM images, electron diffraction patterns and the resulting structural model of mesoporous benzene–silica.
Figure 3: Structural models of mesoporous benzene–silica.
Figure 4: Model showing the pore surface of mesoporous benzene–silica.

Similar content being viewed by others

References

  1. Yanagisawa, T., Shimizu, T., Kuroda, K. & Kato, C. The preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials. Bull. Chem. Soc. Jpn 63, 988–992 (1990).

    Article  CAS  Google Scholar 

  2. Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C. & Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710–712 (1992).

    Article  ADS  CAS  Google Scholar 

  3. Beck, J. S. et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. J. Am. Chem. Soc. 114, 10834–10843 (1992).

    Article  CAS  Google Scholar 

  4. Inagaki, S., Fukushima, Y. & Kuroda, K. Synthesis of highly ordered mesoporous materials from a layered polysilicate. J. Chem. Soc. Chem. Commun. 680–682 (1993).

  5. Firouzi, A. et al. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science 267, 1138–1143 (1995).

    Article  ADS  CAS  Google Scholar 

  6. Bagshaw, S. A., Prouzet, E. & Pinnavaia, T. J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269, 1242–1244 (1995).

    Article  ADS  Google Scholar 

  7. Ying, J. Y., Mehnert, C. P. & Wong, M. S. Synthesis and applications of supramolecular-templated mesoporous materials. Angew. Chem. Int. Edn Engl. 38, 56–77 (1999).

    Article  CAS  Google Scholar 

  8. Attard, G. S. et al. Mesoporous platinum films from lyotropic liquid crystalline phases. Science 278, 838–840 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

    Article  ADS  CAS  Google Scholar 

  10. Inagaki, S., Guan, S., Fukushima, Y., Ohsuna, T. & Terasaki, O. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their framework. J. Am. Chem. Soc. 121, 9611–9614 (1999).

    Article  CAS  Google Scholar 

  11. Melda, B. J., Holland, B. T., Blanford, C. F. & Stein, A. Mesoporous sieves with unified hybrid inorganic/organic framework. Chem. Mater. 11, 3302–3308 (1999).

    Article  Google Scholar 

  12. Asefa, T., MacLachlan, M. J., Coombs, N. & Ozin, G. A. Periodic mesoporous organosilicas with organic groups inside the channel walls. Nature 402, 867–871 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Guan, S., Inagaki, S., Ohsuna, T. & Terasaki, O. Cubic hybrid organic-inorganic mesoporous crystal with a decaoctahedral shape. J. Am. Chem. Soc. 122, 5660–5661 (2000).

    Article  CAS  Google Scholar 

  14. Stein, A., Melde, B. J. & Schroden, R. C. Hybrid inorganic-organic mesoporous silicates—Nanoscopic reactors coming of age. Adv. Mater. 12, 1403–1419 (2000).

    Article  CAS  Google Scholar 

  15. Yang, P., Zhao, D., Margolese, D. I., Chmelka, B. F. & Stucky, G. D. Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396, 152–155 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Lee, B., Lu, D., Kondo, J. N. & Domen, K. Single crystal particles of a mesoporous mixed transition metal oxide with a wormhole structure. Chem. Commun. 2118–2119 (2001).

  17. Liu, Y., Zhang, W. & Pinnavaia, T. J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angew. Chem. Int. Edn Engl. 40, 1255–1258 (2001).

    Article  CAS  Google Scholar 

  18. Kruk, M. & Jaroniec, M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials. Chem. Mater. 13, 3169–3183 (2001).

    Article  CAS  Google Scholar 

  19. Cerveau, G., Corriu, R. J., Dabiens, B. & Bideau, J. L. Synthesis of stable organo(bis-silanetriols): X-ray powder structure of 1,4-bis(trihydroxysilyl)benzene. Angew. Chem. Int. Edn Engl. 39, 4533–4537 (2000).

    Article  CAS  Google Scholar 

  20. Loy, D. A. & Shea, K. J. Bridged polysilsesquioxanes—Highly porous hybrid organic-inorganic materials. Chem. Rev. 95, 1431–1442 (1995).

    Article  CAS  Google Scholar 

  21. Corriu, R. J. P. Ceramics and nanostructures from molecular precursors. Angew. Chem. Int. Edn Engl. 39, 1376–1398 (2000).

    Article  CAS  Google Scholar 

  22. Harmer, M. A., Farneth, W. E. & Sun, Q. Towards the sulfuric acid of solids. Adv. Mater. 10, 1255–1257 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Yamamoto for help in computer simulation of structural models, and S. Hyde for critical reading of the manuscript. O.T. was supported by CREST, Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Inagaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inagaki, S., Guan, S., Ohsuna, T. et al. An ordered mesoporous organosilica hybrid material with a crystal-like wall structure. Nature 416, 304–307 (2002). https://doi.org/10.1038/416304a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416304a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing