Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4

Abstract

Inorganic compounds with the AB2X4 spinel structure have been studied for many years, because of their unusual physical properties. The spinel crystallographic structure, first solved by Bragg in 19151, has cations occupying both tetrahedral (A) and octahedral (B) sites. Interesting physics arises when the B-site cations become mixed in valence. Magnetite (Fe3O4) is a classic and still unresolved example, where the tendency to form ordered arrays of Fe2+ and Fe3+ ions competes with the topological frustration of the B-site network2. The CuIr2S4 thiospinel is another example, well known for the presence of a metal–insulator transition at 230 K with an abrupt decrease of the electrical conductivity on cooling accompanied by the loss of localized magnetic moments3,4,5,6,7. Here, we report the determination of the crystallographic structure of CuIr2S4 below the metal–insulator transition. Our results indicate that CuIr2S4 undergoes a simultaneous charge-ordering and spin-dimerization transition—a rare phenomenon in three-dimensional compounds. Remarkably, the charge-ordering pattern consists of isomorphic octamers of Ir83+S24 and Ir84+S24 (as isovalent bi-capped hexagonal rings). This extraordinary arrangement leads to an elegant description of the spinel structure, but represents an increase in complexity with respect to all the known charge-ordered structures, which are typically based on stripes, slabs or chequerboard patterns.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Superlattice peaks resulting from charge ordering and lattice dimerization in Culr2S4: electron, X-ray and neutron diffraction data.
Figure 2: The low-temperature crystal structure of CuIr2S4.
Figure 3: Pair distribution function of CuIr2S4 at 50 K.

Similar content being viewed by others

References

  1. Bragg, W. H. The structure of magnetite and the spinels. Nature 95, 561–561 (1915).

    Article  ADS  Google Scholar 

  2. Iizumi, M. et al. Structure of magnetite (Fe3O4) below the Verwey transition temperature. Acta Crystallogr. 38, 2121–2133 (1982).

    Article  Google Scholar 

  3. Furubayashi, T., Matsumoto, T., Hagino, T. & Nagata, S. Structural and magnetic studies of metal-insulator transition in thiospinel CuIr2S4. J. Phys. Soc. Jpn 63, 3333–3339 (1994).

    Article  ADS  CAS  Google Scholar 

  4. Matsuno, J. et al. Photoemission study of the metal-insulator transition in CuIr2S4. Phys. Rev. B 55, R15979–R15982 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Nagata, S. et al. Metal-insulator transition in the spinel-type CuIr2(S1-xSex)4 system. Phys. Rev. B 58, 6844–6854 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Matsumoto, N., Endoh, R., Nagata, S., Furubayashi, T. & Matsumoto, T. Metal-insulator transition and superconductivity in the spinel-type Cu(Ir1-xRhx)2S4 system. Phys. Rev. B 60, 5258–5265 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Burkov, A. T. et al. Anomalous resistivity and thermopower of the spinel-type compounds CuIr2S4 and CuIr2Se4. Phys. Rev. B 61, 10049–10056 (2000).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  8. Bray, J. W. et al. Observation of a spin-Peierls transition in a Heisenberg antiferromagnetic linear-chain system. Phys. Rev. Lett. 35, 744–747 (1975).

    Article  ADS  CAS  Google Scholar 

  9. Jacobs, I. S. et al. Spin-Peierls transitions in magnetic donor-acceptor compounds of tetrathiafulvalene (TTF) with bisdithiolene metal complexes. Phys. Rev. B 14, 3036–3051 (1976).

    Article  ADS  CAS  Google Scholar 

  10. Bray, J. W., Interrante, I. V., Jacobs, I. S. & Bonner, J. C. Extended Linear Chain Compounds (ed. Miller, J. S.) (Plenum, New York, 1983).

    Google Scholar 

  11. Ishibashi, H., Sakai, T. & Nakahigashi, K. X-ray diffraction study on spinel compound CuIr2S4 with metal-insulator transition. J. Magn. Magn. Mater. 226–230, 233–234 (2001).

    Article  ADS  Google Scholar 

  12. Billinge, S. J. L. & Egami, T. Short-range atomic structure of Nd2-xCexCuO4-y determined by real-space refinement of neutron-powder-diffraction data. Phys. Rev. B 47, 14386–14406 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Kumagai, K., Kakuyanagi, K., Endoh, R. & Nagata, S. NMR study on the metal-insulator transition of (Cu1-xNix)Ir2S4. Physica C 341, 741–742 (2000).

    Article  ADS  Google Scholar 

  14. Hase, M., Terasaki, I. & Uchinokura, K. Observation of the spin-Peierls transition in linear Cu2+ (spin-1/2) chains in an inorganic compound CuGeO3. Phys. Rev. Lett. 70, 3651–3654 (1993).

    Article  ADS  CAS  Google Scholar 

  15. Hirota, K. et al. Dimerization of CuGeO3 in the Spin-Peierls state. Phys. Rev. Lett. 73, 736–739 (1994).

    Article  ADS  CAS  Google Scholar 

  16. Lüdecke, J. et al. Acentric low-temperature superstructure of NaV2O5. Phys. Rev. Lett. 82, 3633–3636 (1999).

    Article  ADS  Google Scholar 

  17. Marezio, M., McWhan, D. B., Derniew, P. D. & Remeika, J. P. Charge localization at metal-insulator transitions in Ti4O7. Phys. Rev. Lett. 28, 1390–1393 (1972).

    Article  ADS  CAS  Google Scholar 

  18. Anderson, P. W. Ordering and antiferromagnetism in ferrites. Phys. Rev. 102, 1008–1013 (1956).

    Article  ADS  CAS  Google Scholar 

  19. Rodríguez-Carvajal, J., Rousse, G., Masquelier, C. & Hervieu, M. Electronic crystallization in a lithium battery material: columnar ordering of electrons and holes in the spinel LiMn2O4. Phys. Rev. Lett. 81, 4660–4663 (1998).

    Article  ADS  Google Scholar 

  20. Stokes, H. T. & Hatch, D. M. Isotropy Subgroups of the 230 Crystallographic Space Groups (World Scientific, Singapore, 1988).

    MATH  Google Scholar 

  21. Larson, A. C. & von Dreele, R. B. (The Regents of the University of California, Los Alamos, 1985).

  22. Peterson, P. F., Gutmann, M., Proffen, T. & Billinge, S. J. L. PDFgetN: a user-friendly program to extract the total scattering structure factor and the pair distribution function from neutron powder diffraction data. J. Appl. Crystallogr. 33, 1192 (2000).

    Article  CAS  Google Scholar 

  23. Proffen, T. & Billinge, S. J. L. PDFFIT, a program for full profile structural refinement of the atomic pair distribution function. J. Appl. Crystallogr. 32, 572–575 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y.-S.H., V.K. and S-W.C. were partially supported by the National Science Foundation; Y.H. acknowledges the support of a JSPS Postdoctoral Fellowship for Research Abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo G. Radaelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radaelli, P., Horibe, Y., Gutmann, M. et al. Formation of isomorphic Ir3+ and Ir4+ octamers and spin dimerization in the spinel CuIr2S4. Nature 416, 155–158 (2002). https://doi.org/10.1038/416155a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/416155a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing