insight

Nature 416, 211-218 (14 March 2002) | doi:10.1038/416211a

Bose–Einstein condensation of atomic gases

James R. Anglin1 & Wolfgang Ketterle1

Top

The early experiments on Bose–Einstein condensation in dilute atomic gases accomplished three long-standing goals. First, cooling of neutral atoms into their motional ground state, thus subjecting them to ultimate control, limited only by Heisenberg's uncertainty relation. Second, creation of a coherent sample of atoms, in which all occupy the same quantum state, and the realization of atom lasers — devices that output coherent matter waves. And third, creation of a gaseous quantum fluid, with properties that are different from the quantum liquids helium-3 and helium-4. The field of Bose–Einstein condensation of atomic gases has continued to progress rapidly, driven by the combination of new experimental techniques and theoretical advances. The family of quantum-degenerate gases has grown, and now includes metastable and fermionic atoms. Condensates have become an ultralow-temperature laboratory for atom optics, collisional physics and many-body physics, encompassing phonons, superfluidity, quantized vortices, Josephson junctions and quantum phase transitions.

  1. Research Laboratory for Electronics, MIT-Harvard Center for Ultracold Atoms, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA