Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of a cold receptor reveals a general role for TRP channels in thermosensation

Abstract

The cellular and molecular mechanisms that enable us to sense cold are not well understood. Insights into this process have come from the use of pharmacological agents, such as menthol, that elicit a cooling sensation. Here we have characterized and cloned a menthol receptor from trigeminal sensory neurons that is also activated by thermal stimuli in the cool to cold range. This cold- and menthol-sensitive receptor, CMR1, is a member of the TRP family of excitatory ion channels, and we propose that it functions as a transducer of cold stimuli in the somatosensory system. These findings, together with our previous identification of the heat-sensitive channels VR1 and VRL-1, demonstrate that TRP channels detect temperatures over a wide range and are the principal sensors of thermal stimuli in the mammalian peripheral nervous system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A subset of trigeminal neurons express an outwardly rectifying Ca2+-permeable channel activated by menthol and cold.
Figure 2: Cooling compounds activate the cloned receptor.
Figure 3: Electrophysiological properties of menthol-induced currents in transfected HEK293 cells.
Figure 4: The menthol receptor is sensitive to cold.
Figure 5: CMR1 is a member of the TRP family of ion channels.
Figure 6: CMR1 is expressed by small-diameter neurons in trigeminal and dorsal root ganglia.
Figure 7: TRP-like channels mediate thermosensation from cold to hot.

Similar content being viewed by others

References

  1. Fields, H. L. Pain 13–78 (McGraw-Hill, New York, 1987)

    Google Scholar 

  2. Julius, D. & Basbaum, A. I. Molecular mechanisms of nociception. Nature 413, 203–210 (2001)

    Article  ADS  CAS  Google Scholar 

  3. Raja, S. N., Meyer, R. A., Ringkamp, M. & Campbell, J. N. in Textbook of Pain (ed. Wall, P. D.Melzack, R.) 11–57 (Churchill Livingstone, Edinburgh, 1999)

    Google Scholar 

  4. Nagy, I. & Rang, H. Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons. Neuroscience 88, 995–997 (1999)

    Article  CAS  Google Scholar 

  5. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl Acad. Sci. USA 93, 15435–15439 (1996)

    Article  ADS  CAS  Google Scholar 

  6. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997)

    Article  ADS  CAS  Google Scholar 

  7. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000)

    Article  ADS  CAS  Google Scholar 

  8. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000)

    Article  ADS  CAS  Google Scholar 

  9. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999)

    Article  ADS  CAS  Google Scholar 

  10. Hensel, H. & Zotterman, Y. The effect of menthol on the thermoreceptors. Acta Physiol. Scand. 24, 27–34 (1951)

    Article  CAS  Google Scholar 

  11. Bessou, P. & Perl, E. R. Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J. Neurophysiol. 32, 1025–1043 (1969)

    Article  CAS  Google Scholar 

  12. Kress, M., Koltzenburg, M., Reeh, P. W. & Handwerker, H. O. Responsiveness and functional attributes of electrically localized terminals of cutaneous C-fibers in vivo and in vitro. J. Neurophysiol. 68, 581–595 (1992)

    Article  CAS  Google Scholar 

  13. Simone, D. A. & Kajander, K. C. Excitation of rat cutaneous nociceptors by noxious cold. Neurosci. Lett. 213, 53–56 (1996)

    Article  CAS  Google Scholar 

  14. Simone, D. A. & Kajander, K. C. Responses of cutaneous A-fiber nociceptors to noxious cold. J. Neurophysiol. 77, 2049–2060 (1997)

    Article  CAS  Google Scholar 

  15. Cain, D. M., Khasabov, S. G. & Simone, D. A. Response properties of mechanoreceptors and nociceptors in mouse glabrous skin: an in vivo study. J. Neurophysiol. 85, 1561–1574 (2001)

    Article  CAS  Google Scholar 

  16. Reid, G. & Flonta, M. L. Cold current in thermoreceptive neurons. Nature 413, 480 (2001)

    Article  ADS  CAS  Google Scholar 

  17. Suto, K. & Gotoh, H. Calcium signalling in cold cells studied in cultured dorsal root ganglion neurons. Neuroscience 92, 1131–1135 (1999)

    Article  CAS  Google Scholar 

  18. Reid, G. & Flonta, M. Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci. Lett. 297, 171–174 (2001)

    Article  CAS  Google Scholar 

  19. Askwith, C. C., Benson, C. J., Welsh, M. J. & Snyder, P. M. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc. Natl Acad. Sci. USA 98, 6459–6463 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Pierau, F. K., Torrey, P. & Carpenter, D. O. Mammalian cold receptor afferents: role of an electrogenic sodium pump in sensory transduction. Brain Res. 73, 156–160 (1974)

    Article  CAS  Google Scholar 

  21. Braun, H. A., Bade, H. & Hensel, H. Static and dynamic discharge patterns of bursting cold fibers related to hypothetical receptor mechanisms. Pflugers Arch. 386, 1–9 (1980)

    Article  CAS  Google Scholar 

  22. Swandulla, D., Carbone, E., Schafer, K. & Lux, H. D. Effect of menthol on two types of Ca currents in cultured sensory neurons of vertebrates. Pflugers Arch. 409, 52–59 (1987)

    Article  CAS  Google Scholar 

  23. Schafer, K., Braun, H. A. & Isenberg, C. Effect of menthol on cold receptor activity. Analysis of receptor processes. J. Gen. Physiol. 88, 757–776 (1986)

    Article  CAS  Google Scholar 

  24. Okazawa, M., Terauchi, T., Shiraki, T., Matsumura, K. & Kobayashi, S. l-Menthol-induced [Ca2+]i increase and impulses in cultured sensory neurons. Neuroreport 11, 2151–2155 (2000)

    Article  CAS  Google Scholar 

  25. Eccles, R. Menthol and related cooling compounds. J. Pharm. Pharmacol. 46, 618–630 (1994)

    Article  CAS  Google Scholar 

  26. Clapham, D. E., Runnels, L. W. & Strubing, C. TheTRP ion channel family. Nature Rev. Neurosci. 2, 387–396 (2001)

    Article  CAS  Google Scholar 

  27. Wei, E. T. & Seid, D. A. AG-3-5: a chemical producing sensations of cold. J. Pharm. Pharmacol. 35, 110–112 (1983)

    Article  CAS  Google Scholar 

  28. Chuang, H. H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001)

    Article  ADS  CAS  Google Scholar 

  29. Kenshalo, D. R. & Duclaux, R. Response characteristics of cutaneous cold receptors in the monkey. J. Neurophysiol. 40, 319–332 (1977)

    Article  CAS  Google Scholar 

  30. Perraud, A. L. et al. ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology. Nature 411, 595–599 (2001)

    Article  ADS  CAS  Google Scholar 

  31. Sano, Y. et al. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293, 1327–1330 (2001)

    Article  ADS  CAS  Google Scholar 

  32. Runnels, L. W., Yue, L. & Clapham, D. E. TRP-PLIK, a bifunctional protein with kinase and ion channel activities. Science 291, 1043–1047 (2001)

    Article  ADS  CAS  Google Scholar 

  33. Tsavaler, L., Shapero, M. H., Morkowski, S. & Laus, R. Trp-p8, a novel prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Res. 61, 3760–3769 (2001)

    CAS  PubMed  Google Scholar 

  34. Rainville, P., Chen, C. C. & Bushnell, M. C. Psychophysical study of noxious and innocuous cold discrimination in monkey. Exp. Brain Res. 125, 28–34 (1999)

    Article  CAS  Google Scholar 

  35. Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000)

    Article  CAS  Google Scholar 

  36. Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985–990 (2000)

    Article  ADS  CAS  Google Scholar 

  37. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999)

    Article  ADS  CAS  Google Scholar 

  38. Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97, 6155–6160 (2000)

    Article  ADS  CAS  Google Scholar 

  39. Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000)

    Article  ADS  CAS  Google Scholar 

  40. Campero, M., Serra, J., Bostock, H. & Ochoa, J. L. Slowly conducting afferents activated by innocuous low temperature in human skin. J. Physiol. 535, 855–865 (2001)

    Article  CAS  Google Scholar 

  41. Dodt, E. & Zotterman, Y. The discharge of specific cold fibres at high temperatures (the paradoxical cold). Acta Physiol. Scand. 26, 358–365 (1952)

    Article  CAS  Google Scholar 

  42. Craig, A. D. & Bushnell, M. C. The thermal grill illusion: unmasking the burn of cold pain. Science 265, 252–255 (1994)

    Article  ADS  CAS  Google Scholar 

  43. Wahren, L. K., Torebjork, E. & Jorum, E. Central suppression of cold-induced C fibre pain by myelinated fibre input. Pain 38, 313–319 (1989)

    Article  CAS  Google Scholar 

  44. Yarnitsky, D. & Ochoa, J. L. Release of cold-induced burning pain by block of cold-specific afferent input. Brain 113, 893–902 (1990)

    Article  Google Scholar 

  45. Eccles, R. Role of cold receptors and menthol in thirst, the drive to breathe and arousal. Appetite 34, 29–35 (2000)

    Article  CAS  Google Scholar 

  46. Wei, E. T. Pharmacological aspects of shaking behaviour produced by TRH, AG-3-5, and morphine withdrawal. Fed. Proc. 40, 1491–1496 (1981)

    CAS  PubMed  Google Scholar 

  47. Takeuchi, S., Tamaoki, J., Kondo, M. & Konno, K. Effect of menthol on cytosolic Ca2+ levels in canine airway epithelium in culture. Biochem. Biophys. Res. Commun. 201, 1333–1338 (1994)

    Article  CAS  Google Scholar 

  48. Eckert, S. P., Taddese, A. & McCleskey, E. W. Isolation and culture of rat sensory neurons having distinct sensory modalities. J. Neurosci. Methods 77, 183–190 (1997)

    Article  CAS  Google Scholar 

  49. Lewis, C. A. Ion-concentration dependence of the reversal potential and the single channel conductance of ion channels at the frog neuromuscular junction. J. Physiol. 286, 417–445 (1979)

    Article  CAS  Google Scholar 

  50. Brake, A. J., Wagenbach, M. J. & Julius, D. New structural motif for ligand-gated ion channels defined by an ionotropic ATP receptor. Nature 371, 519–523 (1994)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of our laboratory for encouragement, advice and assistance throughout this project. We are also grateful to R. Nicoll, H. Ingraham and A. Basbaum for advice and critical reading of the manuscript. D.D.M. was supported by a National Institutes of Health (NIH) postdoctoral training grant from the University of California—San Francisco (UCSF) Cardiovascular Research Institute and is a recipient of an Arthritis Foundation Postdoctoral Fellowship. W.M.N. was supported by a Fulbright scholarship and a NIH predoctoral training grant from the UCSF Biomedical Sciences Graduate Program. This work was supported by grants from the NIH to D.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julius.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKemy, D., Neuhausser, W. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416, 52–58 (2002). https://doi.org/10.1038/nature719

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature719

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing