Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure and dynamics of KH domains from FBP bound to single-stranded DNA

Abstract

Gene regulation can be tightly controlled by recognition of DNA deformations that are induced by stress generated during transcription1,2,3. The KH domains of the FUSE-binding protein (FBP), a regulator of c-myc expression1,4, bind in vivo and in vitro to the single-stranded far-upstream element (FUSE), 1,500 base pairs upstream from the c-myc promoter4,5,6. FBP bound to FUSE acts through TFIIH at the promoter4. Here we report the solution structure of a complex between the KH3 and KH4 domains of FBP and a 29-base single-stranded DNA from FUSE. The KH domains recognize two sites, 9–10 bases in length, separated by 5 bases, with KH4 bound to the 5′ site and KH3 to the 3′ site. The central portion of each site comprises a tetrad of sequence 5′d-ATTC for KH4 and 5′d-TTTT for KH3. Dynamics measurements show that the two KH domains bind as articulated modules to single-stranded DNA, providing a flexible framework with which to recognize transient, moving targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structural analysis of the FBP3/4-ssDNA complex.
Figure 2: Structure of the FBP3/4–ssDNA complex.
Figure 3: Interdomain motion in the FBP3/4–M29 ssDNA complex, a, 15N-{1H} NOE values as a function of residue number.

Similar content being viewed by others

References

  1. Liu, J. et al. Defective interplay of activators and repressors with TFIIH in xeroderma pigmentosum. Cell 104, 353–363 (2001).

    Article  CAS  Google Scholar 

  2. Rothman-Denes, L. B., Dai, X., Davydova, E., Carter, R. & Kazimierczak, K. Transcriptional regulation by DNA structural transitions and single-stranded DNA binding proteins. Cold Spring Harbor Symp. Quant. Biol. 63, 63–73 (1999).

    Article  Google Scholar 

  3. Michelotti, E. F., Sanford, S. & Levens, D. Marking of active genes on mitotic chromosomes. Nature 388, 895–899 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Liu, J. et al. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 5, 331–341 (2000).

    Article  CAS  Google Scholar 

  5. Duncan, R. C. et al. A sequence-specific, single strand binding protein activates the far-upstream of c-myc and defines a new DNA binding motif. Genes Dev. 8, 465–480 (1994).

    Article  CAS  Google Scholar 

  6. Michelotti, G. A. et al. Multiple single-stranded cis elements are associated with activated chromatin of the human c-myc gene in vivo. Mol. Cell. Biol. 16, 2656–2669 (1996).

    Article  CAS  Google Scholar 

  7. Burd, C. G. & Dreyfuss, G. Conserved structures and diversity of functions of RNA binding proteins. Science 265, 615–621 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Clore, G. M. & Gronenborn, A. M. Determining structures of larger proteins and protein complexes by NMR. Trends Biotechnol. 16, 22–34 (1998).

    Article  CAS  Google Scholar 

  9. Lewis, H. A. et al. Sequence-specific RNA binding by a Nova KH domain: implications for paraneoplastic disease and the fragile X syndrome. Cell 100, 323–332 (2000).

    Article  CAS  Google Scholar 

  10. Baber, J. L., Libutti, D., Levens, D. & Tjandra, N. High precision solution structure of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K, a c-myc transcription factor. J. Mol. Biol. 289, 949–962 (1999).

    Article  CAS  Google Scholar 

  11. Musco, G. et al. Three-dimensional structure and stability of the KH domain: molecular insights into the fragile X syndrome. Cell 85, 237–245 (1996).

    Article  CAS  Google Scholar 

  12. Saenger, W. Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Book  Google Scholar 

  13. Gorenstein, D. G. Conformation and dynamics of DNA and protein-DNA complexes by 31P NMR. Chem. Rev. 94, 1315–1138 (1994)..

    Article  CAS  Google Scholar 

  14. Clore, G. M., Starich, M. R. & Gronenborn, A. M. Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J. Am. Chem. Soc. 120, 10571–10572 (1998).

    Article  CAS  Google Scholar 

  15. Clore, G. M., Gronenborn, A. M. & Bax, A. A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. J. Magn. Reson. 131, 159–162 (1998)

    Article  ADS  CAS  Google Scholar 

  16. Braddock, D. T., Cai, M., Baber, J. L., Huang, Y. & Clore, G. M. Rapid identification of medium to large scale interdomain motion in modular proteins using dipolar couplings. J. Am. Chem. Soc. 123, 8634–8635 (2001).

    Article  CAS  Google Scholar 

  17. Clore, G. M. et al. Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins. J. Am. Chem. Soc. 112, 4989–4990 (1990).

    Article  CAS  Google Scholar 

  18. Baber, J. L., Szabo, A. & Tjandra, N. Analysis of slow interdomain motion of macromolecules using NMR relaxation data. J. Am. Chem. Soc. 123, 3953–3959 (2001).

    Article  CAS  Google Scholar 

  19. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear-magnetic-relaxation in macromolecules. 1 Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1980).

    Article  Google Scholar 

  20. Cantor, C. R. & Schimmel, P. R. Biophysical Chemistry Part II, 564 and Part III, 1008–1010 (Freeman, San Francisco, 1980).

    Google Scholar 

  21. Kim, T.-K., Ebright, R. H. & Reinberg, D. Mechanism of ATP-dependent promoter melting by transcription factor IIH. Science 288, 1418–1421 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Avigan, M. I., Stober, B. & Levens, D. A far upstream element stimulates c-myc expression in undifferentiated leukemia cells. J. Biol. Chem. 265, 18538–18545 (1990).

    CAS  PubMed  Google Scholar 

  23. Grandori, C., Cowley, S. M., James, L. P. & Eisenman, R. N. The Myc/Max/Mad network and the transcriptional control of cell behavior. Annu. Rev. Cell Dev. Biol. 16, 653–699 (2000).

    Article  CAS  Google Scholar 

  24. He, L. et al. Loss of FBP function arrests cellular proliferation and extinguishes c-myc expression. EMBO J. 19, 1034–1044 (2000).

    Article  CAS  Google Scholar 

  25. Cornilescu, G., Delaglio, F. & Bax, A. Protein backbone angle restraints from searching a database of protein chemical shift and sequence homology. J. Biomol. NMR 31, 289–302 (1999).

    Article  Google Scholar 

  26. Schwieters, C. D. & Clore, G. M. Internal coordinates for molecular dynamics and minimization in structure determination and refinement. J. Magn. Reson. 152, 288–302 (2001).

    Article  ADS  CAS  Google Scholar 

  27. Clore, G. M. & Gronenborn, A. M. New methods of structure refinement for macromolecular structure determination by NMR. Proc. Natl Acad. Sci. USA 95, 5891–5898 (1998).

    Article  ADS  CAS  Google Scholar 

  28. Schwieters, C. D. & Clore, G. M. The VMD-XPLOR visualization package for NMR structure refinement. J. Magn. Reson. 149, 239–244 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Nicholls, A., Sharp, K. A. & Honig, G. Protein folding and association: insights into interfacial and thermodynamic properties of hydrocarbons. Proteins 17, 297–309 (1991).

    Google Scholar 

  30. Clore, G. M. & Garrett, D. S. R-factor, free R and complete cross-validation for dipolar coupling refinement of NMR structures. J. Am. Chem. Soc. 121, 9008–9012 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Garrett and F. Delaglio for software support; C. A. Bewley, M. Caffrey, W. A. Eaton, J. Kuszewski, L. Murphy, C. Schwieters, A. Szabo and N. Tjandra for discussions; and C. A. Bewley for critically reading the manuscript. This work was supported in part by the AIDS Targeted Antiviral Program of the Office of the Director of the National Institutes of Health (to G.M.C.).

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braddock, D., Louis, J., Baber, J. et al. Structure and dynamics of KH domains from FBP bound to single-stranded DNA. Nature 415, 1051–1056 (2002). https://doi.org/10.1038/4151051a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/4151051a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing