Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Diverse supernova sources of pre-solar material inferred from molybdenum isotopes in meteorites

Abstract

Variations in the isotopic composition of some components in primitive meteorites demonstrate that the pre-solar material was not completely homogenized, nor was it processed at sufficiently high temperatures to erase the signatures of the diverse stellar sources1. This is in accord with the observation that accretion disks of young stellar objects are at relatively low temperatures2. Carbonaceous chondrites are considered to represent the ‘average’ Solar System composition; the rare pre-solar grains in the matrixes of carbonaceous chondrites3 have been used to identify some sources of the pre-solar material. Here we report that the molybdenum isotopic composition of bulk carbonaceous chondrites is distinctly different from the accepted average solar value. We show that the Mo data require the presence of material produced in at least two different r-processes, and that the contribution from the p-process material is decoupled from the r-process, all occurring in supernova explosions. This is consistent with the emerging picture of diverse sources inferred from short-lived isotopes in the early Solar System4 and elemental analyses of metal-poor stars5,6.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mo isotope anomalies in carbonaceous chondrites and a CAI compared with pre-solar SiC grain data and theoretical models.

Similar content being viewed by others

References

  1. Zinner, E. in Astrophysical Implications of Laboratory Study of Presolar Materials (eds Bernatowicz, T. J. & Zinner, E. K.) 3–26 (American Institute of Physics, Woodbury, 1997).

    Book  Google Scholar 

  2. Beckwith, S. V. W., Sargent, A. I., Chini, R. S. & Guesten, R. A survey for circumstellar disks around young stellar objects. Astrophys. J. 99, 924–945 (1990).

    ADS  Google Scholar 

  3. Anders, E. & Zinner, E. Interstellar grains in primitive meteorites—Diamond, silicon carbide, and graphite. Meteoritics 28, 490–514 (1993).

    Article  ADS  CAS  Google Scholar 

  4. Wasserburg, G. J., Busso, M. & Gallino, R. Abundances of actinides and short-lived nonactinides in the interstellar medium: Diverse supernova sources for the r-processes. Astrophys. J. 466, L109–L113 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Sneden, C. et al. Evidence of multiple r-process sites in the early galaxy: New observations of CS 22892-052. Astrophys. J. 533, L139–L142 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Qian, Y.-Z. & Wasserburg, G. J. Abundances in the uranium-rich star BPS CS 31082-001. Astrophys. J. 552, L55–L58 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Alexander, C. M. O'D., Boss, A. P. & Carlson, R. W. The early evolution of the inner solar system: A meteoritic perspective. Science 293, 64–68 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Alexander, C. M. O'D. Trace element contents of chondrule rims and interchondrule matrix in ordinary chondrites. Geochim. Cosmochim. Acta 59, 3247–3266 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Arlandini, C. et al. Neutron capture in low-mass asymptotic giant branch stars: cross sections and abundance signatures. Astrophys. J. 525, 886–900 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Wallerstein, G. et al. Synthesis of the elements in stars: Forty years of progress. Rev. Mod. Phys. 69, 995–1084 (1997).

    Article  ADS  CAS  Google Scholar 

  11. Cameron, A. G. W. Some properties of r-process accretion disks and jets. Astrophys. J. 562, 456–469 (2001).

    Article  ADS  Google Scholar 

  12. Nicolussi, G. K. et al. Molybdenum isotopic composition of individual presolar silicon carbide grains from the Murchison meteorite. Geochim. Cosmochim. Acta 62, 1093–1104 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Huss, G. in Astrophysical Implications of Laboratory Study of Presolar Materials (eds Bernatowicz, T. J. & Zinner, E. K.) 721–748 (American Institute of Physics, Woodbury, 1997).

    Book  Google Scholar 

  14. Kashiv, Y. et al. Synchrotron X-ray fluorescence: a new approach for determining trace element concentrations in individual presolar SiC grains. Lunar Planet Sci XXXII, A2192 (2001).

    ADS  Google Scholar 

  15. Anders, E. & Grevesse, N. Abundances of the elements—Meteoritic and solar. Geochim. Cosmochim. Acta 53, 197–214 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Dauphas, N., Marty, B. & Reisberg, L. Molybdenum evidence for inherited planetary scale isotope heterogeneity of the protosolar nebula. Astrophys. J. (in the press).

  17. Yin, Q.-Z., Yamashita, K. & Jacobsen, S. B. Mo and Zr isotopic signatures in the “haystack”: Evidence for presolar silicates of supernova origin? Lunar Planet. Sci. XXXI, A1920 (2000).

    ADS  Google Scholar 

  18. Pellin, M. J., Davis, A. M., Lewis, R. S., Amari, S. & Clayton, R. N. Molybdenum isotopic composition of single silicon carbide grains from supernovae. Lunar Planet. Sci. XXX, A1969 (1999).

    ADS  Google Scholar 

  19. Meyer, B. S., Clayton, D. D & The, T.-S. Molybdenum and zirconium isotopes from a supernova neutron burst. Astrophys. J. 540, L49–L52 (2000).

    Article  ADS  CAS  Google Scholar 

  20. McCulloch, M. T. & Wasserburg, G. J. More anomalies from the Allende meteorite – Samarium. Geophys. Res. Lett. 5, 599–602 (1978).

    Article  ADS  CAS  Google Scholar 

  21. Nittler, L. R., Alexander, C. M. O'D., Wang, J. & Gao, X. Meteoritic oxide grain from supernova found. Nature 393, 222 (1998).

    Article  ADS  CAS  Google Scholar 

  22. Cassen, P. & Chick, K. M. in Astrophysical Implications of Laboratory Study of Presolar Materials (eds Bernatowicz, T. J. & Zinner, E. K.) 697–719 (American Institute of Physics, Woodbury, 1997).

    Book  Google Scholar 

  23. Yin, Q.-Z., Jacobsen, S. B., Blichert-Toft, J., Télouk, P. & Albarède, F. Nb-Zr and Hf-W isotope systematics: Applications to early Solar System chronology and planetary differentiation. Lunar Planet. Sci. XXXII, A2128 (2001).

    ADS  Google Scholar 

  24. Rotaru, M., Birck, J. L. & Allègre, C. J. Clues to early Solar System history from chromium isotopes in carbonaceous chondrites. Nature 358, 465–470 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Niederer, F. R., Papanastassiou, D. A. & Wasserburg, G. J. Absolute isotopic abundances of Ti in meteorites. Geochim. Cosmochim. Acta 49, 835–851 (1985).

    Article  ADS  CAS  Google Scholar 

  26. Yin, Q.-Z. & Jacobsen, S. B. The 97Tc-97Mo chronometer and its implications for timing of terrestrial accretion and core formation. Lunar Planet. Sci. XXIX, A1802 (1998).

    ADS  Google Scholar 

  27. Yin, Q.-Z., Yamashita, K. & Jacobsen, S. B. in Ninth Annual V.M. Goldschmidt Conference A7637 [CD-ROM] (LPI, Houston, 1999).

    Google Scholar 

Download references

Acknowledgements

We thank H. Palme for the CAI A44A and C. Francis and G. MacPherson for meteorite samples. We thank G.J. Wasserburg, M. Petaev, A.G.W. Cameron, R. Gallino and A. Davis for comments on the manuscript. This work was supported by NASA (Origins of Solar Systems and Cosmochemistry) and NSF (EAR-IF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stein B. Jacobsen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, Q., Jacobsen, S. & Yamashita, K. Diverse supernova sources of pre-solar material inferred from molybdenum isotopes in meteorites. Nature 415, 881–883 (2002). https://doi.org/10.1038/415881a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415881a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing