Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Growth of nanowire superlattice structures for nanoscale photonics and electronics

Abstract

The assembly of semiconductor nanowires and carbon nanotubes into nanoscale devices and circuits could enable diverse applications in nanoelectronics and photonics1. Individual semiconducting nanowires have already been configured as field-effect transistors2, photodetectors3 and bio/chemical sensors4. More sophisticated light-emitting diodes5 (LEDs) and complementary and diode logic6,7,8 devices have been realized using both n- and p-type semiconducting nanowires or nanotubes. The n- and p-type materials have been incorporated in these latter devices either by crossing p- and n-type nanowires2,5,6,9 or by lithographically defining distinct p- and n-type regions in nanotubes8,10, although both strategies limit device complexity. In the planar semiconductor industry, intricate n- and p-type and more generally compositionally modulated (that is, superlattice) structures are used to enable versatile electronic and photonic functions. Here we demonstrate the synthesis of semiconductor nanowire superlattices from group III–V and group IV materials. (The superlattices are created within the nanowires by repeated modulation of the vapour-phase semiconductor reactants during growth of the wires.) Compositionally modulated superlattices consisting of 2 to 21 layers of GaAs and GaP have been prepared. Furthermore, n-Si/p-Si and n-InP/p-InP modulation doped nanowires have been synthesized. Single-nanowire photoluminescence, electrical transport and electroluminescence measurements show the unique photonic and electronic properties of these nanowire superlattices, and suggest potential applications ranging from nano-barcodes to polarized nanoscale LEDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Synthesis of nanowire superlattices.
Figure 2: GaAs/GaP nanowire junctions.
Figure 3: Nanowire superlattice structures.
Figure 4: Modulation-doped nanowires.

Similar content being viewed by others

References

  1. Lieber, C. M. The incredible shrinking circuit. Sci. Am. 285, 58–64 (2001).

    Article  CAS  Google Scholar 

  2. Cui, Y. & Lieber, C. M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 291, 851–853 (2001).

    Article  ADS  CAS  Google Scholar 

  3. Wang, J. F., Gudiksen, M. S., Duan, X. F., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  ADS  CAS  Google Scholar 

  4. Cui, Y., Wei, Q. Q., Park, H. K. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F. & Lieber, C. M. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66–69 (2001).

    Article  ADS  CAS  Google Scholar 

  6. Huang, Y. et al. Logic gates and computation from assembled nanowire building blocks. Science 294, 1313–1317 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Bachtold, A., Hadley, P., Nakanishi, T. & Dekker, C. Logic circuits with carbon nanotube transistors. Science 294, 1317–1320 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Derycke, V., Martel, R., Appenzeller, J. & Avouris, P. Carbon nanotube inter- and intramolecular logic gates. Nano Lett. 1, 453–456 (2001).

    Article  ADS  CAS  Google Scholar 

  9. Huang, Y., Duan, X. F., Wei, Q. Q. & Lieber, C. M. Directed assembly of one-dimensional nanostructures into functional networks. Science 291, 630–633 (2001).

    Article  ADS  CAS  Google Scholar 

  10. Zhou, C. W., Kong, J., Yenilmez, E. & Dai, H. J. Modulated chemical doping of individual carbon nanotubes. Science 290, 1552–1555 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Gudiksen, M. S. & Lieber, C. M. Diameter-selective synthesis of semiconductor nanowires. J. Am. Chem. Soc. 122, 8801–8802 (2000).

    Article  CAS  Google Scholar 

  12. Cui, Y., Lauhon, L. J., Gudiksen, M. S., Wang, J. F. & Lieber, C. M. Diameter-controlled synthesis of single-crystal silicon nanowires. Appl. Phys. Lett. 78, 2214–2216 (2001).

    Article  ADS  CAS  Google Scholar 

  13. Gudiksen, M. S., Wang, J. F. & Lieber, C. M. Synthetic control of the diameter and length of single crystal semiconductor nanowires. J. Phys. Chem. B 105, 4062–4064 (2001).

    Article  CAS  Google Scholar 

  14. Wagner, R. S. in Whisker Technology 47–119 (Wiley-Interscience, New York, 1970).

    Google Scholar 

  15. Morales, A. M. & Lieber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208–211 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Duan, X. F. & Lieber, C. M. General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298–302 (2000).

    Article  CAS  Google Scholar 

  17. Cui, Y., Duan, X. F., Hu, J. T. & Lieber, C. M. Doping and electrical transport in silicon nanowires. J. Phys. Chem. B 104, 5213–5216 (2000).

    Article  CAS  Google Scholar 

  18. Nicewarner-Pena, S. R. et al. Submicrometer metallic barcodes. Science 294, 137–141 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Chow, E. et al. Three-dimensional control of light in a two-dimensional photonic crystal slab. Nature 407, 983–986 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Huang, M. H. et al. Room-temperature ultraviolet nanowire nanolasers. Science 292, 1897–1899 (2001).

    Article  ADS  CAS  Google Scholar 

  21. Bachtold, A. et al. Scanned probe microscopy of electronic transport in carbon nanotubes. Phys. Rev. Lett. 84, 6082–6085 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Hu, J., Ouyang, M., Yang, P. & Lieber, C. M. Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399, 48–51 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Bennett, C. H. & DiVincenzo, D. P. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank X. Duan for discussions, and W. MoberlyChan and A. J. Garratt-Reed for assistance with TEM imaging and analysis. M.S.G. thanks the NSF for predoctoral fellowship support. C.M.L. acknowledges support of this work by the Office of Naval Research and Defense Advanced Projects Research Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Lieber.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gudiksen, M., Lauhon, L., Wang, J. et al. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415, 617–620 (2002). https://doi.org/10.1038/415617a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415617a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing