Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Identification of diploid endosperm in an early angiosperm lineage

Abstract

In flowering plants, the developmental and genetic basis for the establishment of an embryo-nourishing tissue differs from all other lineages of seed plants. Among extant nonflowering seed plants (conifers, cycads, Ginkgo, Gnetales), a maternally derived haploid tissue (female gametophyte) is responsible for the acquisition of nutrients from the maternal diploid plant, and the ultimate provisioning of the embryo. In flowering plants, a second fertilization event, contemporaneous with the fusion of sperm and egg to yield a zygote, initiates a genetically biparental and typically triploid embryo-nourishing tissue called endosperm. For over a century, triploid biparental endosperm has been viewed as the ancestral condition in extant flowering plants1,2,3. Here we report diploid biparental endosperm in Nuphar polysepalum, a basal angiosperm. We show that diploid endosperms are common among early angiosperm lineages and may represent the ancestral condition among flowering plants. If diploid endosperm is plesiomorphic, the triploid endosperms of the vast majority of flowering plants must have evolved from a diploid condition through the developmental modification of the unique fertilization process that initiates endosperm.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four-celled/four-nucleate Nuphar female gametophyte.
Figure 2: Convergence in form of angiosperm female gametophytes.
Figure 3: The second fertilization event in Nuphar.
Figure 4: Evolution of female gametophyte structure and ploidy level of endosperm in basal angiosperms.

Similar content being viewed by others

References

  1. Friedman, W. E. Organismal duplication, inclusive fitness theory, and altruism: Understanding the evolution of endosperm and the angiosperm reproductive syndrome. Proc. Natl Acad. Sci. USA 92, 3913–3917 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Palser, B. F. The bases of angiosperm phylogeny: embryology. Ann. Missouri Bot. Gard. 62, 621–646 (1975).

    Article  Google Scholar 

  3. Stebbins, G. L. Flowering Plants: Evolution Above the Species Level (Harvard Univ. Press, Cambridge, Massachusetts, 1974).

    Book  Google Scholar 

  4. Mathews, S. & Donoghue, M. J. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science 286, 947–950 (1999).

    Article  CAS  Google Scholar 

  5. Qui, Y.-L. et al. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes. Nature 402, 404–407 (1999).

    Article  ADS  Google Scholar 

  6. Soltis, P. S., Soltis, D. E. & Chase, M. W. Angiosperm phylogeny inferred from multiple genes as a research tool for comparative biology. Nature 402, 402–404 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Graham, S. W. & Olmstead, R. G. Utility of 17 chloroplast genes for inferring the phylogeny of the basal angiosperms. Am. J. Bot. 87, 1712–1730 (2000).

    Article  CAS  Google Scholar 

  8. Barkman, T. J., Chenery, G., McNeal, J. R., Lyons-Weiler, J. & dePamphilis, C. W. Independent and combined analyses of sequences from all three genomic compartments converge on the root of flowering plant phylogeny. Proc. Natl Acad. Sci. USA 97, 13166–13171 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Endress, P. K. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Plant Sci. 162, 1111–1140 (2001).

    Article  Google Scholar 

  10. Field, T. S. et al. Structure and function of tracheary elements in Amborella trichopoda. Int. J. Plant Sci. 161, 705–712 (2000).

    Article  Google Scholar 

  11. Friedman, W. E. & Floyd, S. K. The origin of flowering plants and their reproductive biology—a tale of two phylogenies. Evolution 55, 217–231 (2001).

    CAS  PubMed  Google Scholar 

  12. Friedman, W. E. Comparative embryology of basal angiosperms. Curr. Opin. Plant Biol. 4, 14–20 (2001).

    Article  CAS  Google Scholar 

  13. Cassman, K. G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Maheshwari, P. An Introduction to the Embryology of Angiosperms (McGraw-Hill, New York, 1950).

    Book  Google Scholar 

  15. Johri, B. M., Ambegaokar, K. B. & Srivastava, P. S. Comparative Embryology of Angiosperms (Springer, Berlin, Germany, 1992).

    Book  Google Scholar 

  16. Winter, A. N. & Shamrov, I. I. Development of the ovule and embryo sac in Nuphar lutea (Nymphaeaceae). Bot. Zhurnal 76, 378–390 (1991).

    Google Scholar 

  17. Battaglia, E. The evolution of the female gametophyte of angiosperms: an interpretative key. (Embryological Questions 14). Ann. Bot. 47, 7–144 (1989).

    Google Scholar 

  18. Orban, I. & Bouharmont, J. Megagametophyte development of Nymphaea nouchali Burm. f. (Nymphaeaceae). Bot. J. Linn. Soc. 126, 339–348 (1998).

    Google Scholar 

  19. van Miegroet, F. & Dujardin, M. Cytologie et histologie de la reproduction chez le Nymphaea heudelottii. Can. J. Bot. 70, 1991–1996 (1992).

    Article  Google Scholar 

  20. Winter, A. N. & Shamrov, I. I. Megasporogenesis and embryo sac development in representatives of the genera Nymphaea and Victoria (Nymphaeaceae). Bot. Zhurnal 76, 1716–1728 (1991).

    Google Scholar 

  21. Batygina, T. B., Shamrov, I. I. & Kolesova, G. E. Embryology of the Nymphaeales and Nelumbonales II. The development of the female embryonic structures. Bot. Zhurnal 67, 1179–1195 (1982).

    Google Scholar 

  22. Galati, B. G. Estudios embriológicos en Cabomba australis (Nymphaeaceae) I. La esporogénesis y las generaciones sexuadas. Boletin Soc. Argentina Bot. 24, 29–47 (1985).

    Google Scholar 

  23. Swamy, B. G. L. Macrogametophytic ontogeny in Schisandra chinensis. J. Indian Bot. Soc. 43, 391–396 (1964).

    Google Scholar 

  24. Yoshida, O. Embryologische studien über Schisandra chinensis Bailey. J. Coll. Arts Sci. Chiba Univ. 3, 459–462 (1962).

    Google Scholar 

  25. Solntseva, M. P. in Comparative Embryology of Flowering Plants (ed. Yakovlev, M. S.) 51–54 (Nauka, Leningrad, Russia, 1981) (in Russian).

    Google Scholar 

  26. Tobe, H., Jaffre, T. & Raven, P. H. Embryology of Amborella (Amborellaceae): descriptions and polarity of character states. J. Plant Res. 113, 271–280 (2000).

    Article  Google Scholar 

  27. Wilson, M. F. & Burley, N. Mate Choice in Plants: Tactics, Mechanisms, and Consequences (Princeton Univ. Press, Princeton, 1983).

    Google Scholar 

  28. Queller, D. C. in Oxford Surveys in Evolutionary Biology (eds Harvey, P. H. & Partridge, L.) 73–109 (Oxford Univ. Press, Oxford, 1989).

    Google Scholar 

  29. Chaw, S. M., Parkinson, C. L., Cheng, Y., Vincent, T. M. & Palmer, J. D. Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc. Natl Acad. Sci. USA 97, 4086–4091 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Bowe, L. M., Coat, G. & dePamphilis, C. W. Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers. Proc. Natl Acad. Sci. USA 97, 4092–4097 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. K. Diggle, L. Hufford and R. H. Robichaux for critical comments on the manuscript and W. Gallup and M. Dozier for assistance with histology. This work was supported by grants from the National Science Foundation to W.E.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William E. Friedman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Williams, J., Friedman, W. Identification of diploid endosperm in an early angiosperm lineage. Nature 415, 522–526 (2002). https://doi.org/10.1038/415522a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415522a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing