Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Structure of the cell-puncturing device of bacteriophage T4

Abstract

Bacteriophage T4 has a very efficient mechanism for infecting cells1. The key component of this process is the baseplate, located at the end of the phage tail, which regulates the interaction of the tail fibres and the DNA ejection machine2. A complex of gene product (gp) 5 (63K) and gp27 (44K), the central part of the baseplate, is required to penetrate the outer cell membrane of Escherichia coli and to disrupt the intermembrane peptidoglycan layer, promoting subsequent entry of phage DNA into the host. We present here a crystal structure of the (gp5–gp27)3 321K complex, determined to 2.9 Å resolution and fitted into a cryo-electron microscopy map at 17 Å resolution of the baseplate-tail tube assembly. The carboxy-terminal domain of gp5 is a triple-stranded β-helix that forms an equilateral triangular prism, which acts as a membrane-puncturing needle. The middle lysozyme domain of gp5, situated on the periphery of the prism, serves to digest the peptidoglycan layer. The amino-terminal, antiparallel β-barrel domain of gp5 is inserted into a cylinder formed by three gp27 monomers, which may serve as a channel for DNA ejection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Assembly of (gp27–gp5*–gp5C)3.
Figure 2: Structure of the (gp27–gp5*–gp5C)3 complex.
Figure 3: CryoEM reconstruction of the T4 baseplate-tail tube assembly.
Figure 4: Structural comparison with T4L13 shows that residues Pro 363-Ala 364-Asp 365 of linker 2 of the three-fold-related neighbouring subunit bind, correctly oriented, into three of the four peptide-binding sites used by the peptidoglycan substrate.

Similar content being viewed by others

References

  1. Goldberg, E., Grinius, L. & Letellier, L. in Molecular Biology of Bacteriophage T4 (ed. Karam, J. D.) 347–356 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  2. Coombs, D. H. & Arisaka, F. in Molecular Biology of Bacteriophage T4 (ed. Karam, J. D.) 259–281 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  3. Eiserling, F. A. & Black, L. W. in Molecular Biology of Bacteriophage T4 (ed. Karam, J. D.) 209–212 (American Society for Microbiology, Washington, DC, 1994).

    Google Scholar 

  4. Kikuchi, Y. & King, J. Genetic control of bacteriophage T4 baseplate morphogenesis. III. Formation of the central plug and overall assembly pathway. J. Mol. Biol. 99, 695–716 (1975).

    Article  CAS  PubMed  Google Scholar 

  5. Vanderslice, R. W. & Yegian, C. D. The identification of late bacteriophage T4 proteins on sodium dodecyl sulfate polyacrylamide gels. Virology 60, 265–275 (1974).

    Article  CAS  PubMed  Google Scholar 

  6. Nakagawa, H., Arisaka, F. & Ishii, S. Isolation and characterization of the bacteriophage T4 tail-associated lysozyme. J. Virol. 54, 460–466 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Mosig, G., Lin, G. W., Franklin, J. & Fan, W. H. Functional relationships and structural determinants of two bacteriophage T4 lysozymes: a soluble (gene e) and a baseplate-associated (gene 5) protein. New Biol. 1, 171–179 (1989).

    CAS  PubMed  Google Scholar 

  8. Matthews, B. W. & Remington, S. J. The three dimensional structure of the lysozyme from bacteriophage T4. Proc. Natl Acad. Sci. USA 71, 4178–4182 (1974).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Takeda, S., Hoshida, K. & Arisaka, F. Mapping of functional sites on the primary structure of the tail lysozyme of bacteriophage T4 by mutational analysis. Biochim. Biophys. Acta 1384, 243–252 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Kanamaru, S., Gassner, N. C., Ye, N., Takeda, S. & Arisaka, F. The C-terminal fragment of the precursor tail lysozyme of bacteriophage T4 stays as a structural component of the baseplate after cleavage. J. Bacteriol. 181, 2739–2744 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bova, R. et al. Bacteriophage T4 gene 27. Nucleic Acids Res. 18, 3046 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murzin, A. G. & Chothia, C. Protein architecture: new superfamilies. Curr. Opin. Struct. Biol. 2, 895–903 (1992).

    Article  CAS  Google Scholar 

  13. Kuroki, R., Weaver, L. H. & Matthews, B. W. A covalent enzyme-substrate intermediate with saccharide distortion in a mutant T4 lysozyme. Science 262, 2030–2033 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Steinbacher, S. et al. Crystal structure of P22 tailspike protein: interdigitated subunits in a thermostable trimer. Science 265, 383–386 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Seckler, R. Folding and function of repetitive structure in the homotrimeric phage P22 tailspike protein. J. Struct. Biol. 122, 216–222 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. van Raaij, M. J., Mitraki, A., Lavigne, G. & Cusack, S. A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. Nature 401, 935–938 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Sheldrick, G. M. in Crystallography of Biological Macromolecules International Tables for Crystallography Vol. F (eds Rossmann, M. G. & Arnold, E.) 734–738 (Kluwer Academic, Dordrecht, 2001).

    Google Scholar 

  18. Otwinowski, Z. in Isomorphous Replacement and Anomalous Scattering. Proc. CCP4 Study Weekend, 25–26 January 1991 (eds Wolf, W., Evans, P. R. & Leslie, A. G. W.) 80–86 (Science and Engineering Research Council, Daresbury, UK, 1991).

    Google Scholar 

  19. Brünger, A. T. et al. Crystallography and NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  20. McRee, D. E. XtalView/Xfit—a versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Frank, J. et al. SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Kraulis, P. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  23. Merritt, E. A. & Bacon, D. J. Raster3D: photorealistic molecular graphics. Methods Enzymol. 277, 505–524 (1997).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. S. Baker for establishing the electron microscopy facilities at Purdue, where we collected the cryoEM data, A. A. Simpson for advice and help in data collection, and B. W. Matthews for discussion of the results. We thank the staff of BioCARS for their help and advice in the data collection at the Advanced Photon Source beam lines 14-BM-C and 14-BM-D. We thank S. Wilder for help in preparation of the manuscript. The work was supported by a National Science Foundation grant to M.G.R.; Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture of Japan to F.A.; a Howard Hughes Medical Institute grant to V.V.M.; a reinvestment grant from Purdue University; and a Keck Foundation award for the purchase of a Philips CM300 electron microscope.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Rossmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanamaru, S., Leiman, P., Kostyuchenko, V. et al. Structure of the cell-puncturing device of bacteriophage T4. Nature 415, 553–557 (2002). https://doi.org/10.1038/415553a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415553a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing