Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A laboratory analogue of the event horizon using slow light in an atomic medium

An Erratum to this article was published on 02 May 2002

Abstract

Singularities underlie many optical phenomena1. The rainbow, for example, involves a particular type of singularity—a ray catastrophe—in which light rays become infinitely intense. In practice, the wave nature of light resolves these infinities, producing interference patterns. At the event horizon of a black hole2, time stands still and waves oscillate with infinitely small wavelengths. However, the quantum nature of light results in evasion of the catastrophe and the emission of Hawking radiation3. Here I report a theoretical laboratory analogue of an event horizon: a parabolic profile of the group velocity7 of light brought to a standstill in an atomic medium4,5,6 can cause a wave singularity similar to that associated with black holes. In turn, the quantum vacuum is forced to create photon pairs with a characteristic spectrum, a phenomenon related to Hawking radiation3. The idea may initiate a theory of ‘quantum’ catastrophes, extending classical catastrophe theory8,9.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic diagram of the proposed experiment.
Figure 2: Physical processes behind electromagnetically induced transparency13 (EIT).
Figure 3: Space–time diagram of a slow-light catastrophe.

Similar content being viewed by others

References

  1. Berry, M. V. & Upstill, C. Catastrophe optics: morphologies of caustics and their diffraction patterns. Prog. Opt. XVII, 257–346 (1980).

    Article  Google Scholar 

  2. Misner, Ch. W., Thorne, K. S. & Wheeler, J. A. Gravitation (Freeman, New York, 1999).

    Google Scholar 

  3. Hawking, S. M. Black hole explosions? Nature 248, 30–31 (1974).

    Article  ADS  Google Scholar 

  4. Liu, Ch., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Philips, D. F., Fleischhauer, A., Mair, A., Walsworth, R. L. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  Google Scholar 

  6. Dutton, Z., Budde, M., Slowe, C. & Hau, L. V. Observation of quantum shock waves created with ultra-compressed slow light pulses in a Bose-Einstein condensate. Science 293, 663–668 (2001).

    Article  ADS  CAS  Google Scholar 

  7. Born, M. & Wolf, E. Principles of Optics (Cambridge Univ. Press, Cambridge, 1999).

    Book  Google Scholar 

  8. Thom, R. Stabilité Structurelle et Morphogénèse (Benjamin, Reading, 1972).

    MATH  Google Scholar 

  9. Poston, T. & Stewart, I. Catastrophe Theory and its Applications (Dover, Mineola, 1996).

    MATH  Google Scholar 

  10. Schleich, W. & Scully, M. O. in New Trends in Atomic Physics (Les Houches session XXXVIII, Elsevier, Amsterdam, 1984).

    Google Scholar 

  11. Wang, L. J., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation. Nature 406, 277–279 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  14. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically-induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Leonhardt, U. & Pinwicki, P. Relativistic effects of light in moving media with extremely low group velocity. Phys. Rev. Lett. 84, 822–825 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Weinberg, S. The Quantum Theory of Fields (Cambridge Univ. Press, Cambridge, 1999).

    MATH  Google Scholar 

  17. Erdélyi, A., Magnus, W., Oberhettinger, F. & Tricomi, F. G. Higher Transcendental Functions (McGraw-Hill, New York, 1981).

    MATH  Google Scholar 

  18. Ablowitz, M. J. & Fokas, A. S. Complex Variables (Cambridge Univ. Press, Cambridge, 1997).

    MATH  Google Scholar 

  19. Brout, R., Massar, S., Parentani, R. & Spindel, Ph. A primer for black hole quantum physics. Phys. Rep. 260, 329–446 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  20. Birrell, N. D. & Davies, P. C. W. Quantum Fields in Curved Space (Cambridge Univ. Press, Cambridge, 1982).

    Book  Google Scholar 

  21. Unruh, W. G. Notes on black-hole evaporation. Phys. Rev. D 14, 870–892 (1976).

    Article  ADS  CAS  Google Scholar 

  22. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  23. Unruh, W. G. Experimental black-hole evaporation? Phys. Rev. Lett. 46, 1351–1353 (1981).

    Article  ADS  Google Scholar 

  24. Visser, M. Acoustic black holes: horizons, ergospheres and Hawking radiation. Class. Quantum Grav. 15, 1767–1791 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  25. Jacobson, T. A. & Volovik, G. E. Event horizons and ergoregions in 3He. Phys. Rev. D 58, 064021-1–064021-7 (1998).

    Article  ADS  Google Scholar 

  26. Volovik, G. E. Simulation of a Panlevé-Gullstrand black hole in a thin 3He-A film. JETP Lett. 69, 705–713 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Garay, L. J., Anglin, J. R., Cirac, J. I. & Zoller, P. Sonic analog of gravitational black holes in Bose-Einstein condensates. Phys. Rev. Lett. 85, 4643–4647 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Reznik, B. Origin of the thermal radiation in a solid-state analogue of a black hole. Phys. Rev. D 62, 044044-1–044044-7 (2000).

    Article  ADS  Google Scholar 

  29. Chapline, G., Hohlfeld, E., Laughlin, R. B. & Santiago, D. I. Quantum phase transitions and the breakdown of classical general relativity. Phil. Mag. B 81, 235–254 (2001).

    Article  ADS  CAS  Google Scholar 

  30. Schwinger, J. On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The Royal Institution discussion meeting on artificial black holes was an inspiration for this work, and I thank the participants and organizers. I acknowledge the support of the ESF programme Cosmology in the Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Leonhardt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonhardt, U. A laboratory analogue of the event horizon using slow light in an atomic medium. Nature 415, 406–409 (2002). https://doi.org/10.1038/415406a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415406a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing