Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The cosmological density of baryons from observations of 3He+ in the Milky Way

Abstract

Primordial nucleosynthesis after the Big Bang can be constrained by the abundances of the light elements and isotopes 2H, 3He, 4He and 7Li (ref. 1). The standard theory of stellar evolution predicts that 3He is also produced by solar-type stars2, so its abundance is of interest not only for cosmology, but also for understanding stellar evolution and the chemical evolution of the Galaxy. The 3He abundance in star-forming (H II) regions agrees with the present value for the local interstellar medium3, but seems to be incompatible4,5,6 with the stellar production rates inferred from observations of planetary nebulae7, which provide a direct test of stellar evolution theory8. Here we develop our earlier observations9,10, which, when combined with recent theoretical developments in our understanding of light-element synthesis and destruction in stars11,12,13,14, allow us to determine an upper limit for the primordial abundance of 3He relative to hydrogen: 3He/H = (1.1 ± 0.2) × 10-5. The primordial density of all baryons determined from the 3He data is in excellent agreement with the densities calculated from other cosmological probes. The previous conflict is resolved because most solar-mass stars do not produce enough 3He to enrich the interstellar medium significantly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Interstellar 3He/H abundances as a function of source metallicity.
Figure 2: Interstellar 3He/H abundances as a function of Galactic radius.

Similar content being viewed by others

References

  1. Walker, T. P., Steigman, G., Schramm, D. N., Olive, K. A. & Kang, H. S. Primordial nucleosynthesis redux. Astrophys. J. 376, 51–69 (1991).

    Article  ADS  CAS  Google Scholar 

  2. Rood, R. T., Steigman, G. & Tinsley, B. M. Stellar production as a source of 3He in the interstellar medium. Astrophys. J. 207, L57–L60 (1976).

    Article  ADS  CAS  Google Scholar 

  3. Rood, R. T., Bania, T. M. & Wilson, T. L. The 8.7 GHz hyperfine line of 3He in galactic H II regions. Astrophys. J. 280, 629–647 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Bania, T. M., Balser, D. S., Rood, R. T., Wilson, T. L. & Wilson, T. A. 3He in the Milky Way interstellar medium: summary of relevant observations. Astrophys. J. (Suppl.) 113, 353–366 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Balser, D. S., Bania, T. M., Rood, R. T. & Wilson, T. L. 3He abundance in planetary nebulae. Astrophys. J. 483, 320–334 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Rood, R. T., Bania, T. M., Balser, D. S. & Wilson, T. L. Helium-3: Status and prospects. Space Sci. Rev. 84, 185–198 (1998).

    Article  ADS  CAS  Google Scholar 

  7. Rood, R. T., Bania, T. M. & Wilson, T. L. Detection of helium-3 in a planetary nebula. Nature 355, 618–619 (1992).

    Article  ADS  CAS  Google Scholar 

  8. Galli, D., Stanghellini, L., Tosi, M. & Palla, F. 3He in planetary nebulae: A challenge to stellar evolution models. Astrophys. J. 477, 210–225 (1997).

    Article  ADS  Google Scholar 

  9. Balser, D. S., Rood, R. T. & Bania, T. M. The 3He abundance in the planetary nebula NGC3242. Astrophys. J. 522, L73–L76 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Balser, D. S., Bania, T. M., Rood, R. T. & Wilson, T. L. 3He in the Milky Way interstellar medium: Abundance determinations. Astrophys. J. 510, 759–783 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Charbonnel, C. A coincident explanation for 12C/13C, 7Li, and 3He anomalies in red giant stars. Astrophys. J. 453, L41–L44 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Charbonnel, C., Brown, J. A. & Wallerstein, G. Mixing processes during the evolution of red giants with moderate metal deficiencies: the role of molecular-weight barriers. Astron. Astrophys. 332, 204–214 (1998).

    ADS  CAS  Google Scholar 

  13. Charbonnel, C. & do Nascimento, J. D. Jr. How many low-mass stars do destroy 3He? Astron. Astrophys. 336, 915–919 (1998).

    ADS  CAS  Google Scholar 

  14. Charbonnel, C. Mixing in stars and the evolution of the 3He abundance. Space Sci. Rev. 84, 199–206 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Dearborn, D. S. P., Steigman, G. & Tosi, M. Galactic evolution of D and 3He including stellar production of 3He. Astrophys. J. 465, 887–897 (1996).

    Article  ADS  CAS  Google Scholar 

  16. Mahaffy, P. R., Donahue, T. M., Atreya, S. K., Owen, T. C. & Niemann, H. B. Galileo probe measurements of D/H and 3He/4He in Jupiter's atmosphere. Space Sci. Rev. 84, 251–263 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Gloeckler, G. & Geiss, J. Measurement of the abundance of helium-3 in the Sun and local interstellar cloud with SWICS on Ulysses. Space Sci. Rev. 84, 275–284 (1998).

    Article  ADS  CAS  Google Scholar 

  18. Tosi, M. in The Light Elements and Their Evolution (eds da Silva, L., Spite, M. & de Medeiros, J. R.) 525–534 (Astronomical Society of the Pacific, ASP, San Francisco, 2000).

    Google Scholar 

  19. Wasserburg, G. J., Boothroyd, A. I. & Sackmann, I.-J. Deep circulation in red giant stars: A solution to the carbon and oxygen isotope puzzles? Astrophys. J. 447, L37–L40 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Hogan, C. J. Giant branch mixing and the ultimate fate of primordial deuterium in the Galaxy. Astrophys. J. 441, L17–L20 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Sackmann, I.-J. & Boothroyd, A. I. Creation of 7Li and destruction of 3He, 9Be, 10B, and 11B in low-mass red giants due to deep circulation. Astrophys. J. 510, 217–231 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Deharveng, L., Peña, M., Caplan, J. & Costero, R. Oxygen and helium abundances in Galactic H II regions—II. Abundance gradients. Mon. Not. R. Astron. Soc. 311, 329–345 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Burles, S., Nollett, K. M. & Turner, M. S. Big-bang nucleosynthesis predictions for precision cosmology. Astrophys. J. 552, L1–L5 (2001).

    Article  ADS  CAS  Google Scholar 

  24. Olive, K. A., Steigman, G. & Skillman, E. D. The primordial abundance of 4He: an update. Astrophys. J. 483, 788–797 (1997).

    Article  ADS  CAS  Google Scholar 

  25. Izotov, Y. I. & Thuan, T. X. The primordial abundance of 4He revisited. Astrophys. J. 500, 188–216 (1998).

    Article  ADS  CAS  Google Scholar 

  26. Pryke, C. et al. Cosmological parameter extraction from the first season of observations with DASI. Astrophys. J. (submitted); reprint astro-ph/0104490 at 〈http://xxx.lanl.gov〉 (2001).

  27. Freedman, W. L. et al. Final results from the Hubble space telescope key project to measure the Hubble constant. Astrophys. J. 553, 47–72 (2001).

    Article  ADS  Google Scholar 

  28. Shaver, P. A., McGee, R. X., Newton, L. M., Danks, A. C. & Pottasch, S. R. The galactic abundance gradient. Mon. Not. R. Astron. Soc. 204, 53–112 (1983).

    Article  ADS  CAS  Google Scholar 

  29. Spite, M. & Spite, F. Lithium abundance at the formation of the galaxy. Nature 297, 483–485 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the international light elements community for support over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Bania.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bania, T., Rood, R. & Balser, D. The cosmological density of baryons from observations of 3He+ in the Milky Way. Nature 415, 54–57 (2002). https://doi.org/10.1038/415054a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/415054a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing