Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Bone indentation recovery time correlates with bond reforming time

Abstract

Despite centuries of work, dating back to Galileo1, the molecular basis of bone's toughness and strength remains largely a mystery. A great deal is known about bone microsctructure2,3,4,5 and the microcracks6,7 that are precursors to its fracture, but little is known about the basic mechanism for dissipating the energy of an impact to keep the bone from fracturing. Bone is a nanocomposite of hydroxyapatite crystals and an organic matrix. Because rigid crystals such as the hydroxyapatite crystals cannot dissipate much energy, the organic matrix, which is mainly collagen, must be involved. A reduction in the number of collagen cross links has been associated with reduced bone strength8,9,10 and collagen is molecularly elongated (‘pulled’) when bovine tendon is strained11. Using an atomic force microscope12,13,14,15,16, a molecular mechanistic origin for the remarkable toughness of another biocomposite material, abalone nacre, has been found12. Here we report that bone, like abalone nacre, contains polymers with ‘sacrificial bonds’ that both protect the polymer backbone and dissipate energy. The time needed for these sacrificial bonds to reform after pulling correlates with the time needed for bone to recover its toughness as measured by atomic force microscope indentation testing. We suggest that the sacrificial bonds found within or between collagen molecules may be partially responsible for the toughness of bone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pulling on collagen.
Figure 2: Pulling on bone.
Figure 3: Indentation of bone.

Similar content being viewed by others

References

  1. Ascenzi, A. Biomechanics and Galileo Galilei. J. Biomech. 26, 95–100 (1993).

    Article  CAS  Google Scholar 

  2. Weiner, S. & Wagner, H. D. The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    Article  ADS  CAS  Google Scholar 

  3. Weiner, S., Traub, W. & Wagner, H. D. Lamellar bone: structure-function relations. J. Struct. Biol. 126, 241–255 (1999).

    Article  CAS  Google Scholar 

  4. An, Y. H. & Draughn, R. A. Mechanical Testing of Bone and the Bone–Implant Interface (CRC Press, New York, 2000).

    Google Scholar 

  5. Currey, J. D. The Mechanical Adaptations of Bones (Princeton Univ. Press, Princeton, 1984).

    Book  Google Scholar 

  6. Reilly, G. C. & Currey, J. D. The effects of damage and microcracking on the impact strength of bone. J. Biomech. 33, 337–343 (2000).

    Article  CAS  Google Scholar 

  7. Reilly, G. C. & Currey, J. D. The development of microcracking and failure in bone depends on the loading mode to which it is adapted. J. Exp. Biol. 202, 543–552 (1999).

    CAS  PubMed  Google Scholar 

  8. Oxlund, H., Barckman, M., Ortoft, G. & Andreassen, T. T. Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17, S365–S371 (1995).

    Google Scholar 

  9. Burstein, A. H., Zika, J. M., Heiple, K. G. & Klein, L. Contribution of collagen and mineral to the elastic–plastic properties of bone. J. Bone Joint Surg. A 57, 956–961 (1975).

    Article  CAS  Google Scholar 

  10. Knott, L. & Bailey, A J. Collagen cross-links in mineralizing tissues: A review of their chemistry, function, and clinical relevance. Bone 22, 181–187 (1998).

    Article  CAS  Google Scholar 

  11. Sasaki, N. & Odajima, S. Elongation mechanism of collagen fibrils and force–strain relations of tendon at each level of structural hierarchy. J. Biomech. 29, 1131–1136 (1996).

    Article  CAS  Google Scholar 

  12. Smith, B. L. et al. Molecular mechanistic origin of toughness of natural adhesives, fibre and composites. Nature 399, 761–763 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J. M. & Gaub, H. E. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276, 1109–1112 (1997).

    Article  CAS  Google Scholar 

  14. Rief, M., Gautel, M., Schemmel, A. & Gaub, H. E. The mechanical stability of immunoglobulin and fibronectin II domains in the muscle protein titin measured by atomic force microscopy. Biophys. J. 75, 3008–3014 (1998).

    Article  CAS  Google Scholar 

  15. Li, H., Oberhauser, A. F., Fowler, S. B., Clarke, J. & Fernandez, J. M. Atomic force microscopy reveals the mechanical design of a modular protein. Proc. Natl Acad. Sci. USA 97, 6527–6531 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Oberhauser, A. F., Hansma, P. K., Carrion-Vazquez, M. & Fernandez, J. M. Stepwise unfolding of titin under force-clamp atomic force microscopy. Proc. Natl Acad. Sci. USA 98, 468–472 (2001).

    Article  ADS  CAS  Google Scholar 

  17. Bustamante, C., Marko, J. F., Siggia, E. D. & Smith, S. Entropic elasticity of lambda-phage DNA. Science 265, 1599–1600 (1994).

    Article  ADS  CAS  Google Scholar 

  18. Chernoff, E. A. G. & Chernoff, D. A. Atomic force microscope images of collagen fibers. J. Vac. Sci. Technol. A 10, 596–599 (1994).

    Article  ADS  Google Scholar 

  19. Revenko, I., Sommer, F., Minh, D. T., Garrone, R. & Franc, J. M. Atomic force microscopy study of the collagen fiber structure. Biol. Cell 80, 67–69 (1994).

    Article  CAS  Google Scholar 

  20. Bigi, A., Gandolfi, M., Roveri, N. & Valdre, G. In vitro calcified tendon collagen: an atomic force and scanning electron microscopy investigation. Biomaterials 18, 657–665 (1997).

    Article  CAS  Google Scholar 

  21. El Feninat, F., Ellis, T. H., Sacher, E. & Stangel, I. Moisture-dependent renaturation of collagen in phosphoric acid etched human dentin. J. Biomed. Mater. Res. 42, 549–553 (1998).

    Article  CAS  Google Scholar 

  22. Miyagawa, A. et al. Surface topology of collagen fibrils associated with proteoglycans in mouse cornea and sclera. Jpn J. Ophthalmol. 44, 591–595 (2000).

    Article  CAS  Google Scholar 

  23. Fullwood, N. J., Hammiche, A., Pollock, H. M., Hourston, D. J. & Song, M. Atomic force microscopy of the cornea and sclera. Curr. Eye Res. 14, 529–535 (1995).

    Article  CAS  Google Scholar 

  24. Paige, M. F. & Goh, M. C. Ultrastructure and assembly of segmental long spacing collagen studied by atomic force microscopy. Micron 32, 355–361 (2001).

    Article  CAS  Google Scholar 

  25. Lin, H., Clegg, D. O. & Lal, R. Imaging real-time proteolysis of single collagen I molecules with an atomic force microscope. Biochemistry 38, 9956–9963 (1999).

    Article  CAS  Google Scholar 

  26. Yamamoto, S. et al. The subfibrillar arrangement of corneal and scleral collagen fibrils as revealed by scanning electron and atomic force microscopy. Arch. Histol. Cytol. 63, 127–135 (2000).

    Article  CAS  Google Scholar 

  27. Dufrene, Y. F., Marchal, T. G. & Rouxhet, P. G. Influence of substratum surface properties of the organization of adsorbed collagen films: in situ characterization by atomic force microscopy. Langmuir 15, 2871–2878 (1999).

    Article  CAS  Google Scholar 

  28. Charras, G. T., Lehenkari, P. P. & Horton, M. A. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86, 86–95 (2001).

    Article  Google Scholar 

  29. Einbinder, J. & Schubert, M. Binding of mucopolysaccharides and dyes by collagen. J. Biol. Chem. 188, 335–341 (1951).

    CAS  PubMed  Google Scholar 

  30. Greene, E. C. Anatomy of the Rat (Hafner, New York, 1963).

    Google Scholar 

Download references

Acknowledgements

We thank E. Oroudjev, J. Cooper, D. Kohn and L. Fisher for their assistance and discussion. We also thank the reviewers of our paper for their helpful suggestions. We thank S. Babbitt and the American Philosophical Society for granting us permission to use the drawing of a rat femur30 shown in Figs 2 and 3. This work was supported by the Materials Research Division and MCB Division of the National Science Foundation, the Materials Research Laboratory Program of the National Science Foundation, and the MURI programme of the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, J., Kindt, J., Drake, B. et al. Bone indentation recovery time correlates with bond reforming time. Nature 414, 773–776 (2001). https://doi.org/10.1038/414773a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414773a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing