Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breakdown of Fermi-liquid theory in a copper-oxide superconductor

Abstract

The behaviour of electrons in solids is well described by Landau's Fermi-liquid theory, which predicts that although electrons in a metal interact, they can still be treated as well defined fermions, which are called ‘quasiparticles’. At low temperatures, the ability of quasiparticles to transport heat is given strictly by their ability to transport charge, as described by a universal relation known as the Wiedemann–Franz law, which hitherto no material has been known to violate. High-temperature superconductors have long been thought to fall outside the realm of Fermi-liquid theory, as suggested by several anomalous properties, but this has yet to be shown conclusively. Here we report an experimental test of the Wiedemann–Franz law in the normal state of a copper-oxide superconductor, (Pr,Ce)2CuO4, which reveals that the elementary excitations that carry heat in this material are not fermions. This is compelling evidence for the breakdown of Fermi-liquid theory in high-temperature superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical resistivity of PCCO versus temperature for a current in the basal plane at different values of magnetic field applied normal to the plane.
Figure 2: Thermal conductivity of PCCO for a heat current in the basal plane, plotted as κ/T versus T2, at different values of the magnetic field applied normal to the plane.
Figure 3: Comparison of charge conductivity σ(T) = 1/ρ(T), plotted as L0/ρ(T) (triangles), and electronic heat conductivity κe, plotted as κe/T (circles), as a function of temperature in the normal state at H = 13 T.

Similar content being viewed by others

References

  1. Landau, L. D. The theory of a Fermi liquid. Sov. Phys. JETP 3, 920–925 (1957).

    MathSciNet  CAS  MATH  Google Scholar 

  2. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  3. Ashcroft, N. W. & Mermin, N. D. Solid State Physics 322 (HRW, Philadelphia, 1976).

    Google Scholar 

  4. Kearney, M. J. & Butcher, P. N. Thermal transport in disordered systems. J. Phys. C. Solid State Phys. 21, L265–L270 (1988).

    Article  ADS  Google Scholar 

  5. Castellani, C., DiCastro, C., Kotliar, G., Lee, P. A. & Strinati, G. Thermal conductivity in disordered interacting-electron systems. Phys. Rev. Lett. 59, 477–480 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Chester, G. V. & Tellung, A. The law of Wiedemann and Franz. Proc. Phys. Soc. 77, 1005–1013 (1961).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. Smrcka, L. & Streda, P. Transport coefficients in strong magnetic fields. J. Phys. C. Solid State Phys. 10, 2153–2161 (1977).

    Article  ADS  CAS  Google Scholar 

  8. Gloos, K., Mitschka, C., Pobell, F. & Smeibidl, P. Thermal conductivity of normal and superconducting metals. Cryogenics 30, 14–18 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Anderson, A. C., Peterson, R. E. & Robichaux, J. E. Thermal and electrical conductivity of Ag and Pt below 1 K. Phys. Rev. Lett. 20, 459–461 (1968).

    Article  ADS  CAS  Google Scholar 

  10. Rumbo, E. R. Transport properties of very pure copper and silver below 8.5 K. J. Phys. F Metal Phys. 6, 85–98 (1976).

    Article  ADS  CAS  Google Scholar 

  11. Ott, H. R., Marti, O. & Hulliger, F. Low temperature thermal conductivity of CeAl3. Solid State Commun. 49, 1129–1131 (1984).

    Article  ADS  CAS  Google Scholar 

  12. Amato, A. et al. Transport properties of CeCu6 at very low temperature. J. Magn. Magn. Mater. 63–64, 300–302 (1987).

    Article  ADS  Google Scholar 

  13. Suderow, H., Brison, J. P., Huxley, A. & Flouquet, J. Thermal conductivity and gap structure of the superconducting phases of UPt3. J. Low Temp. Phys. 108, 11–30 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Tanatar, M. A. et al. Thermal conductivity of superconducting Sr2RuO4 in oriented magnetic fields. Phys. Rev. B 63, 064505-1–064505-7 (2001).

    ADS  Google Scholar 

  15. Belin, S. & Behnia, K. Thermal conductivity of superconducting (TMTSF)2CIO4: evidence for a nodeless gap. Phys. Rev. Lett. 79, 2125–2128 (1999).

    Article  ADS  Google Scholar 

  16. Syme, R. T., Kelly, M. J. & Pepper, M. Direct measurement of the thermal conductivity of a two-dimensional electron gas. J. Phys. Condens. Matter. 1, 3375–3380 (1989).

    Article  ADS  Google Scholar 

  17. Kambe, S. et al. Spin-fluctuation mediated thermal conductivity around the magnetic instability of CeNi2Ge2. J. Low Temp. Phys. 117, 101–112 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Kivelson, S. A., Rokhsar, D. S. & Sethna, J. P. Topology of the resonating valence bond state: Solitons and high-Tc superconductivity. Phys. Rev. B 35, 8865–8868 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Senthil, T. & Fisher, M. P. A. Z2 gauge theory of electron fractionalization in strongly correlated systems. Phys. Rev. B 62, 7850–7881 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Orenstein, J. & Millis, A. J. Advances in the physics of high-temperature superconductivity. Science 288, 468–474 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Boebinger, G. S. et al. Insulator-to-metal crossover in the normal state of La2-xSrxCuO4 near optimum doping. Phys. Rev. Lett. 77, 5417–5420 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Fournier, P. et al. Insulator-metal crossover near optimal doping in Pr2-xCexCuO4: Anomalous normal-state low temperature resistivity. Phys. Rev. Lett. 81, 4720–4723 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Peng, J. L., Li, Z. Y. & Greene, R. L. Growth and characterization of high-quality single crystals of R2-xCexCuO4-y (R = Nd,Sm). Physica C 177, 79–85 (1991).

    Article  ADS  CAS  Google Scholar 

  25. Brinkmann, M. et al. Crystal growth of high-Tc superconductors Pr2-xCexCuO4-δ with substitutions of Ni and Co for Cu. J. Crystal Growth 163, 369–376 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Mackenzie, A. P. et al. Resistive upper critical field of TI2Ba2CuO6 at low temperatures and high magnetic fields. Phys. Rev. Lett. 71, 1238–1241 (1993).

    Article  ADS  CAS  Google Scholar 

  27. Harus, G. I. et al. Two-dimensional weak localisation effects in high temperature superconductor Nd2-xCexCuO4-d. Sov. JETP 116, 1–12 (1999).

    Google Scholar 

  28. Fournier, P. et al. Anomalous saturation of the phase coherence length in underdoped Pr2-xCexCuO4. Phys. Rev. B 62, R11993–R11996 (2000).

    Article  ADS  CAS  Google Scholar 

  29. Thacher, P. D. Effect of boundaries and isotopes on the thermal conductivity of LiF. Phys. Rev. 156, 975–988 (1967).

    Article  ADS  CAS  Google Scholar 

  30. Taillefer, L. et al. Universal heat conduction in YBa2Cu3O6.9. Phys. Rev. Lett. 79, 483–486 (1997).

    Article  ADS  CAS  Google Scholar 

  31. Boaknin, E. et al. Highly anisotropic gap function in the borocarbide superconductor LuNi2B2C. Phys. Rev. Lett. (in the press); preprint cond-mat/0012436 at 〈http://xxx.lanl.gov〉 (2001).

  32. Durst, A. C. & Lee, P. A. Impurity-induced quasiparticle transport and universal-limit Wiedemann-Franz violation in d-wave superconductors. Phys. Rev. B 62, 1270–1290 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Chiao, M. et al. Quasiparticle transport in the vortex state of YBa2Ci3O6.9. Phys. Rev. Lett. 82, 2943–2946 (1999).

    Article  ADS  CAS  Google Scholar 

  34. Chiao, M. et al. Low-energy quasiparticles in cuprate superconductors: A quantitative analysis. Phys. Rev. B 62, 3554–3558 (2000).

    Article  ADS  CAS  Google Scholar 

  35. Behnia, K. et al. Features of heat conduction in organic and cuprate superconductors. J. Low-Temp. Phys. 117, 1089–1098 (1999).

    Article  ADS  CAS  Google Scholar 

  36. Taillefer, L. & Hill, R. W. Heat transport in high-temperature superconductors. Phys. Can. 56, 237–240 (2000).

    Google Scholar 

  37. Senthil, T. et al. Quasiparticle transport and localisation in high Tc superconductors. Phys. Rev. Lett. 81, 4704–4707 (1998).

    Article  ADS  CAS  Google Scholar 

  38. Hussey, N. E. et al. Absence of residual quasiparticle conductivity in the underdoped cuprate YBa2Cu4O8. Phys. Rev. Lett. 85, 4140–4143 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Vojta, M., Zhang, Y. & Sachdev, S. Quantum phase transitions in d-wave superconductors. Phys. Rev. Lett. 85, 4940–4943 (2000).

    Article  ADS  CAS  Google Scholar 

  40. Tsuei, C. C. & Kirtley, J. R. Phase-sensitive evidence for d-wave pairing symmetry in electron-doped cuprate superconductors. Phys. Rev. Lett. 85, 182–185 (2000).

    Article  ADS  CAS  Google Scholar 

  41. Kokales, J. D. et al. Microwave electrodynamics of electron-doped cuprate superconductors. Phys. Rev. Lett. 85, 3696–3699 (2000).

    Article  ADS  CAS  Google Scholar 

  42. Prozorov, R. et al. Evidence for nodal quasiparticles in electron-doped cuprates from penetration depth measurements. Phys. Rev. Lett. 85, 3700–3702 (2000).

    Article  ADS  CAS  Google Scholar 

  43. Granath, M. et al. Nodal quasiparticles and coexisting orders in striped superconductors. Phys. Rev. Lett. 87, 167011-1–167011-4 (2001).

    Article  ADS  Google Scholar 

  44. Belin, S. et al. Probing the upper critical field of κ-(BEDT-TTF)2Cu(NCS)2. J. Superconduct. 12, 497–500 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Kleefisch, S. et al. Possible pseudogap behaviour of electron-doped high-temperature superconductors. Phys. Rev. B 63, 100507-1–100507-4 (2001).

    Article  ADS  Google Scholar 

  46. Osofsky, M. S. et al. in Proc. 10th Anniversary HTS Workshop 284–287 (World Scientific, Singapore, 1996).

    Google Scholar 

  47. Bayot, V. et al. Evidence for weak localisation in the thermal conductivity of a quasi-two-dimensional electron system. Phys. Rev. Lett. 65, 2579–2582 (1990).

    Article  ADS  CAS  Google Scholar 

  48. Berman, R. Thermal Conduction in Solids 145 (Clarendon, Oxford, 1976).

    Google Scholar 

  49. Gutsmiedl, P., Probst, C. & Andres, K. Low temperature calorimetry using an optical heating method. Cryogenics 31, 54–57 (1991).

    Article  ADS  CAS  Google Scholar 

  50. Wiedemann, G. & Franz, R. Ueber die Wärme-Leitungsfähigkeit der Metalle. Ann. Phys. 89, 497–532 (1853).

    Google Scholar 

Download references

Acknowledgements

We thank C. Lupien, E. Boaknin, M. Sutherland, M. Chiao, R. Gagnon, J. Brooks, L. Balicas and B. Brandt for their invaluable help in various aspects of the measurements. This work was supported by the Canadian Institute for Advanced Research and funded by NSERC of Canada. L.T. acknowledges the support of a Premier's Research Excellence Award from the Government of Ontario. The work in Maryland was supported by the NSF Division of Condensed Matter Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis Taillefer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hill, R., Proust, C., Taillefer, L. et al. Breakdown of Fermi-liquid theory in a copper-oxide superconductor. Nature 414, 711–715 (2001). https://doi.org/10.1038/414711a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414711a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing