Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrical control of spin coherence in semiconductor nanostructures

Abstract

The processing of quantum information based on the electron spin degree of freedom1,2 requires fast and coherent manipulation of local spins. One approach is to provide spatially selective tuning of the spin splitting—which depends on the g-factor—by using magnetic fields3, but this requires their precise control at reduced length scales. Alternative proposals employ electrical gating1 and spin engineering in semiconductor heterostructures involving materials with different g-factors. Here we show that spin coherence can be controlled in a specially designed AlxGa1-xAs quantum well in which the Al concentration x is gradually varied across the structure. Application of an electric field leads to a displacement of the electron wavefunction within the quantum well, and because the electron g-factor varies strongly with x, the spin splitting is therefore also changed. Using time-resolved optical techniques, we demonstrate gate-voltage-mediated control of coherent spin precession over a 13-GHz frequency range in a fixed magnetic field of 6 T, including complete suppression of precession, reversal of the sign of g, and operation up to room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sample design.
Figure 2: Voltage-controlled spin coherence.
Figure 3: Electrical tuning of electron spin and charge dynamics.
Figure 4: Tunability of electron spin coherence at different temperatures.

Similar content being viewed by others

References

  1. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998).

    Article  ADS  CAS  Google Scholar 

  3. DiVincento, D. P. et al. Quantum computing and single qubit measurements using the spin filter effect. J. Appl. Phys. 85, 4785–4787 (1999).

    Article  ADS  Google Scholar 

  4. Snelling, M. J. et al. Magnetic g-factor of electrons in GaAs/AlxGa1-xAs quantum wells. Phys. Rev. B 44, 11345–11352 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Kowalski, B. et al. Conduction-band spin splitting of type-I GaxIn1-xAs/InP quantum wells. Phys. Rev. B 49, 14786–14789 (1994).

    Article  ADS  CAS  Google Scholar 

  6. Ivchenko, E L., Kiselev, A. A. & Willander, M. Electronic g-factor in biased quantum wells. Solid State Commun. 102, 375–378 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Jiang, H. W. & Yablonovitch, E. Gate-controlled electron spin resonance in GaAs/AlxGa1-xAs heterostructures. Phys. Rev. B 64, R41307–41310 (2001).

    Article  ADS  Google Scholar 

  8. Salis, G. et al. Wave function spectroscopy in quantum wells with tunable electron density. Phys. Rev. Lett. 79, 5106–5109 (1997).

    Article  ADS  CAS  Google Scholar 

  9. Weisbuch, C. & Hermann, C. Optical detection of conduction-electron spin resonance in GaAs, Ga1-xInxAs, and Ga1-xAlxAs. Phys. Rev. B 15, 816–822 (1977).

    Article  ADS  CAS  Google Scholar 

  10. Gossard, A. C. Growth of microstructures by molecular beam epitaxy. IEEE J. Quant. Electr. 22, 1649–1655 (1986).

    Article  ADS  Google Scholar 

  11. Maranowski, K. D., Ibbetson, J. P., Campman, K. L. & Gossard, A. C. Interface between low-temperature grown GaAs and undoped GaAs as a conduction barrier for back gates. Appl. Phys. Lett. 66, 3459–3461 (1995).

    Article  ADS  CAS  Google Scholar 

  12. Kikkawa, J. M., Smorchkova, I. P., Samarth, N. & Awschalom, D. D. Room-temperature spin memory in two-dimensional electron gases. Science 277, 1284–1287 (1997).

    Article  CAS  Google Scholar 

  13. Amand, T. et al. Spin quantum beats of 2D excitons. Phys. Rev. Lett. 78, 1355–1358 (1997).

    Article  ADS  CAS  Google Scholar 

  14. Miller, D. A. B. et al. Band-edge electroabsorption in quantum well structures: the quantum-confined Stark effect. Phys. Rev. Lett. 53, 2173–2176 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Miller, R. C., Gossard, A. C. & Kleinmann, D. A. Band offsets from two special GaAs-AlxGa1-xAs quantum-well structures. Phys. Rev. B 32, 5443–5446 (1985).

    Article  ADS  CAS  Google Scholar 

  16. Chu-liang, Y. & Qing, Y. Sublevels and excitons in GaAs-AlxGa1-xAs parabolic-quantum-well structures. Phys. Rev. B 37, 1364–1367 (1988).

    Article  ADS  Google Scholar 

  17. Oestreich, M. & Rühle, W. W. Temperature dependence of the electron Lande g-factor in GaAs. Phys. Rev. Lett. 74, 2315–2318 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Bir, G. L., Aronov, A. G. & Pikus, G. E. Spin relaxation of electrons scattered by holes. Sov. Phys. JETP 42, 705–712 (1976).

    ADS  Google Scholar 

  19. Paillard, M. et al. Spin relaxation quenching in semiconductor quantum dots. Phys. Rev. Lett. 86, 1634–1637 (2001).

    Article  ADS  CAS  Google Scholar 

  20. De Poortere, E. P., Tutuc, E., Papadakis, S. J. & Shayegan, M. Resistance spikes at transitions between quantum Hall ferromagnets. Science 290, 1546–1549 (2000).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kotthaus, M. E. Flatté, I. Meinel and R. K. Kawakami for discussions. This work was supported by DARPA, ONR and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. D. Awschalom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salis, G., Kato, Y., Ensslin, K. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001). https://doi.org/10.1038/414619a

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/414619a

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing