Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Thin-film thermoelectric devices with high room-temperature figures of merit

Abstract

Thermoelectric materials are of interest for applications as heat pumps and power generators. The performance of thermoelectric devices is quantified by a figure of merit, ZT, where Z is a measure of a material's thermoelectric properties and T is the absolute temperature. A material with a figure of merit of around unity was first reported over four decades ago, but since then—despite investigation of various approaches—there has been only modest progress in finding materials with enhanced ZT values at room temperature. Here we report thin-film thermoelectric materials that demonstrate a significant enhancement in ZT at 300 K, compared to state-of-the-art bulk Bi2Te3 alloys. This amounts to a maximum observed factor of 2.4 for our p-type Bi2Te3/Sb2Te3 superlattice devices. The enhancement is achieved by controlling the transport of phonons and electrons in the superlattices. Preliminary devices exhibit significant cooling (32 K at around room temperature) and the potential to pump a heat flux of up to 700 W cm-2; the localized cooling and heating occurs some 23,000 times faster than in bulk devices. We anticipate that the combination of performance, power density and speed achieved in these materials will lead to diverse technological applications: for example, in thermochemistry-on-a-chip, DNA microarrays, fibre-optic switches and microelectrothermal systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hole transport across the Bi2Te3/Sb2Te3 superlattice interface.
Figure 2: The ZT of a thermoelectric device.
Figure 3
Figure 4: Cooling properties.
Figure 5: Demonstration of localized and high-speed cooling/heating obtainable with thin-film devices.

Similar content being viewed by others

References

  1. Ioffe, A. F. Semiconductor Thermoelements and Thermoelectric Cooling (Infosearch, London, 1957).

    Google Scholar 

  2. Wright, D. A. Thermoelectric properties of bismuth telluride and its alloys. Nature 181, 834 (1958).

    Article  ADS  Google Scholar 

  3. Ettenberg, M. H., Jesser, W. A. & Rosi, F. D. in Proc. 15th Int. Conf. on Thermoelectrics (ed. Caillat, T.) 52–56 (IEEE, Piscataway, NJ, 1996).

    Book  Google Scholar 

  4. Polvani, D. A., Meng, J. F., Chandrashekar, N. V., Sharp. J. & Badding, J. V. Large improvement in thermoelectric properties in pressure-tuned p-type Sb1.5Bi0.5Te3. Chem. Mater. 13, 2068–2071 (2001).

    Article  CAS  Google Scholar 

  5. Yim, W. M. & Amith, A. Bi-Sb alloys for magneto-thermoelectric and thermomagnetic cooling. Solid State Electron. 15, 1141–1165 (1972).

    Article  ADS  CAS  Google Scholar 

  6. Vining, C. B. in Proc. 11th Int. Conf. on Thermoelectrics (ed. Rao, K. R.) 276–284 (Univ. Texas at Arlington, 1992).

    Google Scholar 

  7. Slack, G. A. & Tsoukala, V. G. Some properties of semiconducting IrSb3. J. Appl. Phys. 76, 1665–1671 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Sales, B. C., Mandrus, D. & Williams, R. K. Filled sketturudite antimonides: a new class of thermoelectric materials. Science 272, 1325–1328 (1996).

    Article  ADS  CAS  Google Scholar 

  9. Mandrus, D. et al. Filled sketterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials. Mater. Res. Soc. Symp. Proc. 478, 199–209 (1997).

    Article  CAS  Google Scholar 

  10. Fleurial, J. P. et al. in Proc. 15th Int. Conf. on Thermoelectrics (ed. Caillat, T.) 91–95 (IEEE, Piscataway, NJ, 1996).

    Book  Google Scholar 

  11. Chung, D. Y. et al. CsBi4Te6: A high-performance thermoelectric material for low-temperature application. Science 287, 1024–1027 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Tritt, T. M., Kanatzidis, M. G., Lyon, H. B. Jr & Mahan, G. D. Thermoelectric materials—New directions and approaches. Mater. Res. Soc. Proc. 478, 73–84 (1997).

    Article  Google Scholar 

  13. Hicks, L. D. & Dresselhaus, M. D. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B 47, 12727–12731 (1993).

    Article  ADS  CAS  Google Scholar 

  14. Harman, T. C., Taylor, P. J., Spears, D. L. & Walsh, M. P. in Proc. 18th Int. Conf. on Thermoelectrics (ed. Ehrlich, A.) 280–284 (IEEE, Piscataway, NJ, 1999).

    Google Scholar 

  15. Venkatasubramanian, R. et al. in Proc. 1st Natl Thermogenic Cooler Workshop (ed. Horn, S. B.) 196–231 (Center for Night Vision and Electro-Optics, Fort Belvoir, VA, 1992).

    Google Scholar 

  16. Venkatasubramanian, R. Thin-film superlattice and quantum-well structures—a new approach to high-performance thermoelectric materials. Naval Res. Rev. 58, 31–40 (1996).

    Google Scholar 

  17. Lee, S. M., Cahill, D. G. & Venkatasubramanian, R. Thermal conductivity of Si-Ge superlattices. Appl. Phys. Lett. 70, 2957–2959 (1997).

    Article  ADS  CAS  Google Scholar 

  18. Mahan, G. D. & Woods, L. M. Multilayer thermionic refrigeration. Phys. Rev. Lett. 80, 4016–4019 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Shakouri, A. & Bowers, J. E. Heterostructure integrated thermionic coolers. Appl. Phys. Lett. 71, 1234–1236 (1997).

    Article  ADS  CAS  Google Scholar 

  20. Harman, T. C., Cahn, J. H. & Logan, M. J. Measurement of thermal conductivity by utilization of the Peltier effect. J. Appl. Phys. 30, 1351–1359 (1959).

    Article  ADS  CAS  Google Scholar 

  21. Venkatasubramanian, R. et al. Low-temperature organometallic epitaxy and its application to superlattice structures in thermoelectrics. Appl. Phys. Lett. 75, 1104–1106 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Venkatasubramanian, R. Low temperature chemical vapor deposition and etching apparatus and method. US Patent No. 6071351 (6 June 2000).

  23. Venkatasubramanian, R. in Recent Trends in Thermoelectric Materials Research III (ed. Tritt, T. M.) Ch. 4 (Academic, San Diego, 2001).

    Google Scholar 

  24. Berger, H. H. Models for contacts to planar devices. Solid State Electron. 15, 145–158 (1972).

    Article  ADS  Google Scholar 

  25. Drabble, J. R., Groves, R. D. & Wolfe, R. Galvanomagnetic effects in n-type Bi2Te3. Proc. Phys. Soc. 71, 430–434 (1957).

    Article  ADS  Google Scholar 

  26. Scherrer, H. & Scherrer, S. in CRC Handbook of Thermoelectrics (ed. Rowe, D. M.) 211–237 (CRC Press, Boca Raton, FL, 1995).

    Google Scholar 

  27. Palmier, J. F. in Heterojunctions and Semiconductor Superlattices (eds Allan, G., Bastard, G., Boccara, N., Launoo, N. & Voos, M.) 127–145 (Springer, Berlin,1986).

    Book  Google Scholar 

  28. Cappaso, F., Mohammed, K. & Cho, A. Y. Resonant tunneling through double barriers, perpendicular quantum transport phenomena in superlattices, and their device applications. IEEE J. Quant. Electron. QE-22, 1853–1869 (1986).

    Article  ADS  Google Scholar 

  29. Venkatasubramanian, R. Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000).

    Article  ADS  CAS  Google Scholar 

  30. Narayanamurti, V., Störmer, H. L., Chin, M. A., Gossard, A. C. & Weigmann, W. Selective transmission of high-frequency phonons by a superlattice: the dielectric phonon filter. Phys. Rev. Lett. 43, 2012–2015 (1979).

    Article  ADS  CAS  Google Scholar 

  31. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  CAS  Google Scholar 

  32. Wiersma, D. S., Bartolini, P., Lagendik, A. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  CAS  Google Scholar 

  33. Simkin, M. V. & Mahan, G. D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000).

    Article  ADS  CAS  Google Scholar 

  34. Slack, G. in Solid State Physics, 1–71 (eds Ehrenreich, H., Seitz, F. & Turnbull, D. ) Series 34 (Academic, New York, 1979).

    Google Scholar 

  35. Cahill, D. G., Watson, S. K. & Pohl, R. O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 46, 6131–6140 (1992).

    Article  ADS  CAS  Google Scholar 

  36. Goldsmid, H. J. in Proc. 18th Int. Conf. on Thermoelectrics (ed. Ehrlich, A.) 531–535 (IEEE Press, Piscataway, NJ, 1999).

    Google Scholar 

  37. Venkatasubramanian, R. Thin-film Thermoelectric Cooling and Heating Devices for DNA Genomics/Proteomics, Thermo-Optical Switching-Circuits, and IR Tags (US Patent Filing, Ser. No. 60/282,185, 2001).

    Google Scholar 

  38. Sheng, P. Introduction to Wave Scattering, Localization, and Mesoscopic Phenomena (Academic, London, 1995).

    Google Scholar 

  39. Kittel, C. Introduction to Solid State Physics (Wiley, New York, 1976).

    MATH  Google Scholar 

  40. Fan, X. et al. SiGeC/Si superlattice microcoolers. Appl. Phys. Lett. 78, 1580–1582 (2001).

    Article  ADS  CAS  Google Scholar 

  41. Cadoff, I. B. & Miller, E. Thermoelectric Materials and Devices (Reinhold, New York, 1960).

    Google Scholar 

  42. Venkatasubramanian, R. Thin-film thermoelectric device and fabrication method of same. US Patent No. 6300150 (9 October 2001).

Download references

Acknowledgements

This work was supported by the US Defense Advanced Research Projects Agency and the US Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Venkatasubramanian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatasubramanian, R., Siivola, E., Colpitts, T. et al. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001). https://doi.org/10.1038/35098012

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35098012

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing