Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs

An Erratum to this article was published on 22 November 2001

Abstract

Climate models with increased levels of carbon dioxide predict that global warming causes heating in the tropics, but investigations of ancient climates based on palaeodata have generally indicated cool tropical temperatures during supposed greenhouse episodes. For example, in the Late Cretaceous and Eocene epochs there is abundant geological evidence for warm, mostly ice-free poles, but tropical sea surface temperatures are generally estimated to be only 15–23 °C, based on oxygen isotope palaeothermometry of surface-dwelling planktonic foraminifer shells. Here we question the validity of most such data on the grounds of poor preservation and diagenetic alteration. We present new data from exceptionally well preserved foraminifer shells extracted from impermeable clay-rich sediments, which indicate that for the intervals studied, tropical sea surface temperatures were at least 28–32 °C. These warm temperatures are more in line with our understanding of the geographical distributions of temperature-sensitive fossil organisms and the results of climate models with increased CO2 levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Multi-species stable isotope array from a typical recrystallized planktonic foraminifer assemblage from the Middle Eocene (DSDP Site 523, Angola basin, South Atlantic Ocean, modified from ref. 26).
Figure 2: Scanning electron micrographs of planktonic foraminifera, contrasting well preserved (af) and poorly preserved (gi) shell textures.
Figure 3: Multi-species stable isotope arrays for a variety of exceptionally well preserved samples.
Figure 4: Comparison of stable isotope data from a typical recrystallized sample (DSDP Site 523, data as in Fig. 1) with a representative sample from this study of approximately the same age (sample RAS 99-17).
Figure 5: Zonal profiles of planktonic foraminifer δ18O as a function of palaeolatitude.

Similar content being viewed by others

References

  1. Urey, H. C. The thermodynamic properties of isotopic substances. J. Chem. Soc. 1947, 562–581 (1947).

    Google Scholar 

  2. Emiliani, C. Depth habitats of some species of pelagic foraminifera as indicated by oxygen isotope ratios. Am J. Sci. 252, 149–158 (1954).

    ADS  Google Scholar 

  3. Crowley, T. J. & Zachos, J. C. in Warm Climates in Earth History (eds Huber, B. T., MacLeod, K. S. & Wing, S. C.) 50–76 (Cambridge Univ. Press, Cambridge, 2000).

    Google Scholar 

  4. Spero, H. J., Bijma, J., Lea, J. W. & Bemis, B. E. Effect of seawater carbonate chemistry on planktonic foraminiferal carbon and oxygen isotope values. Nature 390, 497–500 (1997).

    ADS  CAS  Google Scholar 

  5. Schrag, D. P., DePaolo, D. J. & Richter, F. M. Reconstructing past sea surface temperatures: Correcting for diagenesis of bulk marine carbonate. Geochim. Cosmochim. Acta 59, 2265–2278 (1995).

    ADS  CAS  Google Scholar 

  6. Schrag, D. P. Effects of diagenesis on the isotopic record of late Paleogene tropical sea surface temperatures. Chem. Geol. 161, 215–244 (1999).

    ADS  CAS  Google Scholar 

  7. Shackleton, N. J. & Boersma, A. The climate of the Eocene ocean. J. Geol. Soc. Lond. 138, 153–157 (1981).

    Google Scholar 

  8. Savin, S. M. The history of earth's surface temperature during the past 100 million years. Annu. Rev. Earth Planet. Sci. 5, 319–355 (1977).

    ADS  CAS  Google Scholar 

  9. Shackleton, N. J. in Fossils and Climate (ed. Brenchley, P.) 27–34 (Wiley, Chichester, 1984).

    Google Scholar 

  10. Barron, E. J. Eocene equator-to-pole surface ocean temperatures: a significant climate problem? Paleoceanography 2, 729–739 (1987).

    ADS  Google Scholar 

  11. Rind, D. & Chandler, M. Increased ocean heat transports and warmer climate. J. Geophys. Res. 96, 7437–7461 (1991).

    ADS  Google Scholar 

  12. Horrell, M. A. Energy balance constraints on 18O based paleo-sea surface temperature estimates. Paleoceanography 5, 339–348 (1990).

    ADS  Google Scholar 

  13. Manabe, S. & Bryan, K. CO2-induced change in a coupled ocean-atmosphere model and its paleoclimatic implications. J. Geophys. Res. 90, 11689–11708 (1985).

    ADS  Google Scholar 

  14. Sloan, L. C. & Rea, D. K. Atmospheric carbon dioxide and early Eocene climate: A general circulation model sensitivity study. Palaeogeogr., Palaeoclimatol. Palaeoecol. 119, 275–292 (1995).

    Google Scholar 

  15. Bush, A. B. G. & Philander, S. G. H. The late Cretaceous: Simulation with a coupled atmosphere-ocean general circulation model. Paleoceanography 12, 495–516 (1997).

    ADS  Google Scholar 

  16. Rind, D. Latitudinal temperature gradients and climate change. J. Geophys. Res. 103, 5943–5971 (1998).

    ADS  Google Scholar 

  17. Bice, K. L., Scotese, C. R., Seidov, D. & Barron, E. J. Quantifying the role of geographic change in Cenozoic ocean heat transport using uncoupled atmosphere and ocean models. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 295–310 (2000).

    Google Scholar 

  18. Bralower, T. et al. Late Paleocene to Eocene paleoceanography of the equatorial Pacific Ocean: Stable isotopes recorded at Ocean Drilling Program Site 865, Allison Guyot. Paleoceanography 10, 841–865 (1995).

    ADS  Google Scholar 

  19. Wade, B. in Western North Atlantic Palaeogene and Cretaceous Palaeoceanography (eds Kroon, D., Norris, R. D & Klaus, A.). 273–291 (Spec. Publ. 183, Geological Society, London, 2001).

    Google Scholar 

  20. D'Hondt, S. & Arthur, M. A. Late Cretaceous oceans and the cool tropic paradox. Science 271, 1838–1841 (1996).

    ADS  CAS  Google Scholar 

  21. D'Hondt, S. & Arthur, M. A. Interspecies variation in stable isotopic signals of Maastrichtian planktonic foraminifera. Paleoceanography 10, 123–125 (1995).

    ADS  Google Scholar 

  22. Veizer, J., Godderis, Y. & François, L. M. Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon. Nature 408, 698–701 (2000).

    ADS  CAS  PubMed  Google Scholar 

  23. Crowley, T. J. & Berner, R. A. CO2 and climate change. Science 292, 870–872 (2001).

    CAS  PubMed  Google Scholar 

  24. Killingley, J. S. Effects of diagenetic recrystallization on 18O/16O values of deep-sea sediments. Nature 301, 594–597 (1983).

    ADS  CAS  Google Scholar 

  25. Wilson, P. A. & Opdyke, B. N. Equatorial sea surface temperatures for the Maastrichtian revealed through remarkable preservation of metastable carbonate. Geology, 24, 555–558 (1996).

    ADS  CAS  Google Scholar 

  26. Pearson, P. N., Shackleton, N. J. & Hall, M. A. Stable isotope paleoecology of middle Eocene planktonic foraminifera and multi-species isotope stratigraphy, DSDP Site 523, South Atlantic. J. Foram. Res. 23, 123–140 (1993).

    Google Scholar 

  27. Andreasson, F. P. & Schmitz, B. Tropical Atlantic seasonal dynamics in the early middle Eocene from stable oxygen and carbon isotope profiles of mollusk shells. Paleoceanography, 13, 183–192 (1998).

    ADS  Google Scholar 

  28. Kolodny, Y. & Raab, M. Oxygen isotopes in phosphatic fish remains from Israel: paleothermometry of tropical Cretaceous and Tertiary shelf waters. Palaeogeogr. Palaeoclimatol. Palaeoecol. 64, 59–67 (1988).

    CAS  Google Scholar 

  29. Norris, R. D. & Wilson, P. A. Low-latitude sea-surface temperatures for the mid-Cretaceous and the evolution of planktic foraminifera. Geology 26, 823–826 (1998).

    ADS  Google Scholar 

  30. Wilson, P. A. & Norris, R. D. Warm tropical ocean surface and global anoxia during the mid-Cretaceous period. Nature 412, 425–429 (1991).

    ADS  Google Scholar 

  31. Hemleben, C., Spindler, M. & Anderson, O. R. Modern Planktonic Foraminifera (Springer, New York, 1989).

    Google Scholar 

  32. Blow, W. H. & Banner, F. T. in Fundamentals of Mid-Tertiary Stratigraphical Correlation (ed. Eames, F. T.). 61–151 (Cambridge Univ. Press, Cambridge, 1962).

    Google Scholar 

  33. Blow, W. H. The Cainozoic Globigerinida: a Study of the Morphology, Taxonomy and Evolutionary Relationships and the Stratigraphical Distribution of some Globigerinida (mainly Globigerinacea) Vols 1–3 (Brill, Leiden, 1979).

    Google Scholar 

  34. Zachos, J. C., Stott, L. D. & Lohmann, K. C. Evolution of early Cenozoic marine temperatures. Paleoceanography 9, 353–387 (1994).

    ADS  Google Scholar 

  35. Huber, M. & Sloan, L. C. Climatic response to tropical sea surface temperature changes on a ‘greenhouse’ Earth. Paleoceanography 15, 443–450 (2000).

    ADS  Google Scholar 

  36. Kent, P. E., Hunt, M. A. & Johnstone, M. A. The Geology and Geophysics of Coastal Tanzania. (Natural Environment Research Council Geophysical Paper no. 6, HMSO, London, 1971).

    Google Scholar 

  37. Schluter, T. Geology of East Africa 239 (Borntraeger, Stuttgart, 1997).

    Google Scholar 

  38. Boermsa, A., Premoli Silva, I. & Shackleton, N. J. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography 2, 287–331 (1987).

    ADS  Google Scholar 

  39. Coxall, H. K., Pearson, P. N., Shackleton, N. J. & Hall, M. A. Hantkeninid depth adaptation: an evolving life strategy in a changing ocean. Geology 28, 87–90 (2000).

    ADS  Google Scholar 

  40. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65Ma to present. Science 292, 686–693 (2001).

    ADS  CAS  PubMed  Google Scholar 

  41. Ramanathan, V. & Collins, W. Thermodynamic regulation of ocean warming by cirrus clouds deduced from satellite observations of the 1987 El Niño. Nature 351, 27–32 (1991).

    ADS  Google Scholar 

  42. Waliser, D. E. Some considerations on the thermostat hypothesis. Bull Am. Meteorol. Soc. 77, 357–360 (1996).

    Google Scholar 

  43. Adams, C. G., Lee, D. E. & Rosen, B. R. Conflicting isotopic and biotic evidence for tropical sea-surface temperatures during the Tertiary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 77, 289–313 (1990).

    Google Scholar 

  44. Graham, A. Neotropical Eocene coastal floras and 18O/16O-estimated warmer vs. cooler equatorial waters. Am. J. Bot. 81, 301–306 (1994).

    Google Scholar 

  45. Markwick, P. Fossil crocodilians as indicators of Late Cretaceous and Cenozoic climates: implications for using palaeontological data in reconstructing palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 137, 207–271 (1998).

    Google Scholar 

  46. Barron, E. J. in Effects of Past Global Change on Life 108–117 (National Academy Press, Washington D.C., 1995).

    Google Scholar 

  47. Wilson, P. A., Jenkyns, H. C., Elderfield, H. & Larson, R. L. The paradox of drowned carbonate platforms and the origin of Cretaceous Pacific guyots. Nature 392, 889–894 (1998).

    ADS  CAS  Google Scholar 

  48. Pearson, P. N. & Palmer, M. R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature 406, 695–699 (2000).

    ADS  CAS  PubMed  Google Scholar 

  49. Retallack, G. J. A 300-million-year record of atmospheric carbon dioxide from fossil plant cuticles. Nature 411, 287–290 (2001).

    ADS  CAS  PubMed  Google Scholar 

  50. Erez, B. & Luz, J. Experimental paleotemperature equation for planktonic foraminifera. Geochim. Cosmochim. Acta 47, 1025–1031 (1983).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Tanzania Petroleum Development Corporation and A. Karega for field support, and P. Sexton and J. Whittaker for providing SEM images. We also thank V. Premec-Fucek and R. Norris for providing samples for analysis, and C. Hemleben for insights regarding processes of biomineralization and diagenesis in planktonic foraminifer shells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul N. Pearson.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pearson, P., Ditchfield, P., Singano, J. et al. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature 413, 481–487 (2001). https://doi.org/10.1038/35097000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35097000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing