Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The jamming route to the glass state in weakly perturbed granular media

Abstract

It has been suggested that a common conceptual framework known as ‘jamming’ (refs 1 and 2) may be used to classify a wide variety of physical systems; these include granular media3, colloidal suspensions4 and glass-forming liquids5, all of which display a critical slowdown in their dynamics before a sudden transition to an amorphous rigid state. Decreasing the relevant control parameter (such as temperature, drive or inverse density) may cause geometrical constraints to build up progressively and thus restrict the accessible part of the system's phase space. In glass-forming liquids (thermal molecular systems), jamming is provided by the classical vitrification process of supercooling, characterized by a rapidly increasing and apparently diverging viscosity at sufficiently low temperatures6,7. In driven (athermal) macroscopic systems, a similar slowdown has been predicted to occur, notably in sheared foam or vibrated granular media8,9. Here we report experimental evidence for dynamic behaviour, qualitatively analogous to supercooling, in a driven granular system of macroscopic millimetre-size particles. The granular medium is perturbed by isolated tapping or continuous vibration, with the perturbation intensity serving as a control parameter. We observe the random deflection of an immersed torsion oscillator that moves each time the grains rearrange, like a ‘thermometer’ sensing the granular noise10,11. We caution that our granular analogy to supercooling is based on similarities in the dynamical behaviour, rather than quantitative theory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Typical tapping power spectra.
Figure 2: Continuous vibration power spectra and confrontation to the tapping power spectra.
Figure 3: The ‘jamming route’.

Similar content being viewed by others

References

  1. Liu, A. J. & Nagel, S. R. Jamming is not just cool anymore. Nature 396, 21–22 (1998).

    Article  ADS  CAS  Google Scholar 

  2. Liu, A. J. & Nagel, S. R. (eds) Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (Taylor and Francis, New York, 2001).

    Google Scholar 

  3. Jaeger, H. M., Nagel, S. R. & Behringer, R. P. Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259–1273 (1996).

    Article  ADS  Google Scholar 

  4. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    Article  ADS  CAS  Google Scholar 

  5. Tarjus, G. & Kivelson, D. in Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (eds Liu, A. J. & Nagel, S. R.) 20–38 (Taylor and Francis, New York, 2001).

    Google Scholar 

  6. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  ADS  CAS  Google Scholar 

  7. Debenedetti, P. G. & Stillinger, F. H. Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).

    Article  ADS  CAS  Google Scholar 

  8. Langer, S. A. & Liu, A. J. Sheared foam as a supercooled liquid? Europhys. Lett. 49, 68–74 (2000).

    Article  ADS  CAS  Google Scholar 

  9. O'Hern, C. S., Langer, S. A., Liu, A. J. & Nagel, S. R. Force distributions near jamming and glass transitions. Phys. Rev. Lett. 86, 111–114 (2001).

    Article  ADS  CAS  Google Scholar 

  10. Kurchan, J. Emergence of macroscopic temperatures in systems that are not thermodynamical microscopically: towards a thermodynamical description of slow granular rheology. J. Phys. Condens. Matter 12, 6611–6617 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Barrat, A., Kurchan, J., Loreto, V. & Sellitto, M. Edwards' measures for powders and glasses. Phys. Rev. Lett. 85, 5034–5037 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Pak, H. K., Van Doorn, E. & Behringer, R. P. Effects of ambient gases on granular materials under vertical vibrations. Phys. Rev. Lett. 74, 4643–4646 (1995).

    Article  ADS  CAS  Google Scholar 

  13. Bocquet, L., Charlaix, E., Ciliberto, S. & Crassous, J. Moisture-induced ageing in granular media and the kinetics of capillary condensation. Nature 396, 735–737 (1998).

    Article  ADS  CAS  Google Scholar 

  14. D'Anna, G. Dissipative dynamics of granular media investigated by forced torsion pendulum. Europhys. Lett. 51, 293–299 (2000).

    Article  ADS  CAS  Google Scholar 

  15. Nowak, E. R., Knight, J. B., Ben-Naim, E., Jaeger, H. M. & Nagel, S. R. Density fluctuations in vibrated granular materials. Phys. Rev. E 57, 1971–1982 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Risken, H. The Fokker-Planck Equation (Springer, Berlin, 1989).

    Book  Google Scholar 

  17. D'Anna, G. & Gremaud, G. Activated-like hopping transition in weakly vibrated granular media. Europhys. Lett. 54, 599–604 (2001).

    Article  ADS  CAS  Google Scholar 

  18. Berthier, L., Cugliandolo, L. F. & Iguain, J. L. Glassy systems under time-dependent driving forces: Application to slow granular rheology. Phys. Rev. E 63, 051302-1–051302-15 (2001).

    ADS  Google Scholar 

  19. Speedy, R. J. The hard sphere glass transition. Mol. Phys. 95, 169–178 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. Martin, A. Barrat, L. Cugliandolo and J. Kurchan for discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D'Anna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Anna, G., Gremaud, G. The jamming route to the glass state in weakly perturbed granular media. Nature 413, 407–409 (2001). https://doi.org/10.1038/35096540

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35096540

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing