Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Controlling photons using electromagnetically induced transparency

Abstract

It is well known that a dielectric medium can be used to manipulate properties of light pulses. However, optical absorption limits the extent of possible control: this is especially important for weak light pulses. Absorption in an opaque medium can be eliminated via quantum mechanical interference, an effect known as electromagnetically induced transparency. Theoretical and experimental work has demonstrated that this phenomenon can be used to slow down light pulses dramatically, or even bring them to a complete halt. Interactions between photons in such an atomic medium can be many orders of magnitude stronger than in conventional optical materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electromagnetically induced transparency.
Figure 2: Schematic of spatial compression exhibited when a light pulse (red curve) enters the slow medium (blue).
Figure 3: Dark-state polaritons.

Similar content being viewed by others

References

  1. Boyd, R. W. Nonlinear Optics (Academic, Boston, 1992).

    Google Scholar 

  2. Scully, M. O. & Zubairy, M. S. Quantum Optics (Cambridge Univ. Press, Cambridge, 1997).

    Book  Google Scholar 

  3. Arimondo, E. in Progress in Optics (ed. Wolf, E.) Vol. 35, 259–354 (North-Holland, Amsterdam, 1996).

    Google Scholar 

  4. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50(7), 36–42 (1997).

    Article  ADS  Google Scholar 

  5. Boller, K., Imamoglu, A. & Harris, S. E. Observation of an electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593–2596 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Harris, S. E., Field, J. E. & Kasapi, A. Dispersive properties of electromagnetically induced transparency. Phys. Rev. A 46, R29–R32 (1992).

    Article  ADS  CAS  Google Scholar 

  7. Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Xiao, M., Li, Y., Jin, S. & Gea-Banacloche, J. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett. 74, 666–669 (1995).

    Article  ADS  CAS  Google Scholar 

  9. Kasapi, A., Jain, M., Yin, G. Y. & Harris, S. E. Electromagnetically induced transparency: Propagation dynamics. Phys. Rev. Lett. 74, 2447–2450 (1995).

    Article  ADS  CAS  Google Scholar 

  10. Schmidt, O., Wynands, R., Hussein, Z. & Meschede, D. Steep dispersion and group velocity below c/3000 in coherent population trapping. Phys. Rev. A 53, R27–R30 (1996).

    Article  ADS  CAS  Google Scholar 

  11. Lukin, M. D. et al. Spectroscopy in dense coherent media: line narrowing and interference effects. Phys. Rev. Lett. 79, 2959–2962 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Kash, M. M. et al. Ultra-slow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Budker, D. et al. Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation. Phys. Rev. Lett. 83, 1767–1770 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Harris, S. E., Field, J. E. & Imamoğlu, A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett. 64, 1107–1110 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Schmidt, H. & Imamoğlu, A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett. 21, 1936–1938 (1996).

    Article  ADS  CAS  Google Scholar 

  17. Hemmer, P. et al. Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium. Opt. Lett. 20, 982–984 (1996).

    Article  ADS  Google Scholar 

  18. Matsko, A. B. et al. Anomalous stimulated Brillouin scattering via ultraslow light. Phys. Rev. Lett. 86, 2006–2009 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Jain, M. et al. Efficient nonlinear frequency conversion with maximal atomic coherence. Phys. Rev. Lett. 77, 4326–4329 (1996).

    Article  ADS  CAS  Google Scholar 

  20. Sokolov, A. V. et al. Raman generation by phased and antiphased molecular states. Phys. Rev. Lett. 85, 562–565 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Liang, J. Q. et al. Sideband generation using strongly driven Raman coherence in solid hydrogen. Phys. Rev. Lett. 85, 2474–2477 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Zibrov, A. S., Lukin, M. D. & Scully, M. O. Non-degenerate parametric self-oscillation via resonantly enhanced multiwave mixing in coherent media. Phys. Rev. Lett. 83, 4049–4052 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Harris, S. E. & Hau, L. V. Nonlinear optics at low light levels. Phys. Rev. Lett. 82, 4611–4614 (1999).

    Article  ADS  CAS  Google Scholar 

  24. Lukin, M. D. & Imamoğlu, A. Nonlinear optics and quantum entanglement of ultra-slow single photons. Phys. Rev. Lett. 84, 1419–1422 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Bouwmeester, D., Ekert, A. & Zeilinger, A. The Physics of Quantum Information (Springer, Berlin, 2000).

    Book  Google Scholar 

  26. Cirac, J. L., Zoller, P., Kimble, H. J. & Mabuchi, H. Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221–3224 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Lukin, M. D., Yelin, S. F. & Fleischhauer, M. Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. Lett. 84, 4232–4235 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Oreg, J., Hioe, F. T. & Eberly, J. H. Adiabatic following in multilevel systems. Phys. Rev. A 29, 690–697 (1984).

    Article  ADS  CAS  Google Scholar 

  29. Shvyd'ko, Yu. V. et al. Storage of nuclear energy through magnetic switching. Phys. Rev. Lett. 77, 3232–3235 (1996).

    Article  ADS  CAS  Google Scholar 

  30. Kocharovskaya, O., Rostovtsev, Yu. & Scully, M. Stopping light via hot atoms. Phys. Rev. Lett. 86, 628–631 (2001).

    Article  ADS  CAS  Google Scholar 

  31. Liu, C., Dutton, Z., Behroozi, C. H. & Hau, L. V. Observation of coherent optical information storage in an atomic medium using halted light pulses. Nature 409, 490–493 (2001).

    Article  ADS  CAS  Google Scholar 

  32. Phillips, D., Fleischhauer, A., Mair, A., Walsworth, R. & Lukin, M. D. Storage of light in atomic vapor. Phys. Rev. Lett. 86, 783–786 (2001).

    Article  ADS  CAS  Google Scholar 

  33. Mair, A. et al. Phase coherence and control of stored photonic information. Phys. Rev. Lett. (submitted).

  34. Ham, B., Shahriar, M. S. & Hemmer, P. Enhanced nondegenerate four-wave mixing owing to electromagnetically induced transparency in a spectral hole-burning crystal. Opt. Lett. 22, 1138–1140 (1997).

    Article  ADS  CAS  Google Scholar 

  35. Imamoğlu, A. Electromagnetically induced transparency with two dimensional electron spins. Opt. Comm. 179, 179–182 (2000).

    Article  ADS  Google Scholar 

  36. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  ADS  Google Scholar 

  37. Lukin, M. D., Matsko, A., Fleischhauer, M. & Scully, M. O. Quantum noise and correlations in resonantly enhanced wave mixing based on atomic coherence. Phys. Rev. Lett. 82, 1847–1850 (1999).

    Article  ADS  CAS  Google Scholar 

  38. Vitali, D., Fortunato, M. & Tombesi, P. Complete quantum teleportation with a Kerr nonlinearity. Phys. Rev. Lett. 85, 445–448 (2000).

    Article  ADS  CAS  Google Scholar 

  39. Lukin, M. D. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    Article  ADS  CAS  Google Scholar 

  40. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Preprint quant-ph/0105105 at 〈http://xxx.lanl.gov〉 (2001); Nature (submitted).

Download references

Acknowledgements

We would like to thank S. Harris and M. Scully for many discussions. We also thank J. I. Cirac, L.-M. Duan, M. Fleischauer, D. Phillips, H. Schmidt, R. Walsworth, S. Yelin and P. Zoller. This work was supported by the NSF via a grant to ITAMP and through an ITR program (M.L.) and by a David and Lucile Packard Fellowship (A.I.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Imamoğlu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukin, M., Imamoğlu, A. Controlling photons using electromagnetically induced transparency. Nature 413, 273–276 (2001). https://doi.org/10.1038/35095000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35095000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing