Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Molecular mechanisms of nociception

Abstract

The sensation of pain alerts us to real or impending injury and triggers appropriate protective responses. Unfortunately, pain often outlives its usefulness as a warning system and instead becomes chronic and debilitating. This transition to a chronic phase involves changes within the spinal cord and brain, but there is also remarkable modulation where pain messages are initiated — at the level of the primary sensory neuron. Efforts to determine how these neurons detect pain-producing stimuli of a thermal, mechanical or chemical nature have revealed new signalling mechanisms and brought us closer to understanding the molecular events that facilitate transitions from acute to persistent pain.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Different nociceptors detect different types of pain.
Figure 2: Polymodal nociceptors use a greater diversity of signal-transduction mechanisms to detect physiological stimuli than do primary sensory neurons in other systems.
Figure 3: The molecular complexity of the primary afferent nociceptor is illustrated by its response to inflammatory mediators released at the site of tissue injury.
Figure 4: When nociceptors are exposed to products of injury and inflammation, their excitability is altered by a variety of intracellular signalling pathways.
Figure 5: An alignment of natural and synthetic vanilloid receptor agonists illustrates their structural similarity.

Similar content being viewed by others

References

  1. Sherrington, C. S. The Integrative Action of the Nervous System (Scribner, New York, 1906).

    Google Scholar 

  2. Burgess, P. R. & Perl, E. R. Myelinated afferent fibres responding specifically to noxious stimulation of the skin. J. Physiol. 190, 541–562 (1967).

    Article  CAS  Google Scholar 

  3. Weidner, C. et al. Functional attributes discriminating mechano-insensitive and mechano-responsive C nociceptors in human skin. J. Neurosci. 19, 10184–10190 (1999).

    Article  CAS  Google Scholar 

  4. Djouhri, L., Bleazard, L. & Lawson, S. N. Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. J. Physiol. 513, 857–872 (1998).

    Article  CAS  Google Scholar 

  5. Basbaum, A. I. & Jessell, T. M. in Principles of Neuroscience (eds Kandel, E. R., Schwartz, J. H. & Jessell, T. M.) 472–491 (McGraw-Hill, New York, 2000).

    Google Scholar 

  6. Raja, S. N., Meyer, R. A., Ringkamp, M. & Campbell, J. N. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 11–57 (Churchill Livingstone, Edinburgh, 1999).

    Google Scholar 

  7. Schmidt, R. F. et al. Novel classes of responsive and unresponsive C nociceptors in human skin. J. Neurosci. 15, 333–341 (1995).

    Article  CAS  Google Scholar 

  8. Gebhart, G. F. Visceral polymodal receptors. Prog. Brain Res. 113, 101–112 (1996).

    Article  CAS  Google Scholar 

  9. Snider, W. D. & McMahon, S. B. Tackling pain at the source: new ideas about nociceptors. Neuron 20, 629–632 (1998).

    Article  CAS  Google Scholar 

  10. Hökfelt, T., Zhang, X. & Wiesenfeld-Hallin, Z. Messenger plasticity in primary sensory neurons following axotomy and its functional implications. Trends Neurosci. 17, 22–30 (1994).

    Article  Google Scholar 

  11. Woolf, C. J. & Salter, M. W. Neuronal plasticity: increasing the gain in pain. Science 288, 1765–1769 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Basbaum, A. I. & Woolf, C. J. Pain. Curr. Biol. 9, R429–R431 (1999).

    Article  CAS  Google Scholar 

  13. Kress, M. & Reeh, P. W. More sensory competence for nociceptive neurons in culture. Proc. Natl Acad. Sci. USA 93, 14995–14997 (1996).

    Article  ADS  CAS  Google Scholar 

  14. Nagy, I. & Rang, H. Noxious heat activates all capsaicin-sensitive and also a sub-population of capsaicin-insensitive dorsal root ganglion neurons. Neuroscience 88, 995–997 (1999).

    Article  CAS  Google Scholar 

  15. Kirschstein, T., Greffrath, W., Busselberg, D. & Treede, R. D. Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists. J. Neurophysiol. 82, 2853–2860 (1999).

    Article  CAS  Google Scholar 

  16. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 1–20 (1998).

    Article  Google Scholar 

  18. Welch, J. M., Simon, S. A. & Reinhart, P. H. The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl Acad. Sci. USA 97, 13889–13894 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Nagy, I. & Rang, H. P. Similarities and differences between the responses of rat sensory neurons to noxious heat and capsaicin. J. Neurosci. 19, 10647–10655 (1999).

    Article  CAS  Google Scholar 

  20. Caterina, M. J. et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288, 306–313 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Davis, J. B. et al. Vanilloid receptor-1 is essential for inflammatory thermal hyperalgesia. Nature 405, 183–187 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Caterina, M. J., Rosen, T. A., Tominaga, M., Brake, A. J. & Julius, D. A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398, 436–441 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Kanzaki, M. et al. Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nature Cell Biol. 1, 165–170 (1999).

    Article  CAS  Google Scholar 

  24. Harteneck, C., Plant, T. D. & Schultz, G. From worm to man: three subfamilies of TRP channels. Trends Neurosci. 23, 159–166 (2000).

    Article  CAS  Google Scholar 

  25. Estacion, M., Sinkins, W. G. & Schilling, W. P. Regulation of Drosophila transient receptor potential-like (TrpL) channels by phospholipase C-dependent mechanisms. J. Physiol. 530, 1–19 (2001).

    Article  CAS  Google Scholar 

  26. Simone, D. A. & Kajander, K. C. Responses of cutaneous A-fiber nociceptors to noxious cold. J. Neurophysiol. 77, 2049–2060 (1997).

    Article  CAS  Google Scholar 

  27. Reid, G. & Flonta, M. Cold transduction by inhibition of a background potassium conductance in rat primary sensory neurones. Neurosci. Lett. 297, 171–174 (2001).

    Article  CAS  Google Scholar 

  28. Askwith, C., Benson, C., Welsh, M. & Snyder, P. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature. Proc. Natl Acad. Sci. USA 98, 6459–6463 (2001).

    Article  ADS  CAS  Google Scholar 

  29. Suto, K. & Gotoh, H. Calcium signaling in cold cells studied in cultured dorsal root ganglion neurons. Neuroscience. 92, 1131–1135 (1999).

    Article  CAS  Google Scholar 

  30. Lingueglia, E. et al. A modulatory subunit of acid sensing ion channels in brain and dorsal root ganglion cells. J. Biol. Chem. 272, 29778–29783 (1997).

    Article  CAS  Google Scholar 

  31. García-Añoveros, J., Samad, T. A., Zuvela-Jelaska, L., Woolf, C. J. & Corey, D. P. Transport and localization of the DEG/ENaC ion channel BNaC1α to peripheral mechanosensory terminals of dorsal root ganglia neurons. J. Neurosci. 21, 2678–2686 (2001).

    Article  Google Scholar 

  32. Price, M. P. et al. The mammalian sodium channel BNC1 is required for normal touch sensation. Nature 407, 1007–1011 (2000).

    Article  ADS  CAS  Google Scholar 

  33. Krishtal, O. A., Marchenko, S. M. & Obukhov, A. G. Cationic channels activated by extracellular ATP in rat sensory neurons. Neuroscience 27, 995–1000 (1988).

    Article  CAS  Google Scholar 

  34. Nakamura, F. & Strittmatter, S. M. P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc. Natl Acad. Sci. USA 93, 10465–10470 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Cockayne, D. A. et al. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature 407, 1011–1015 (2000).

    Article  ADS  CAS  Google Scholar 

  36. Bevan, S. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 85–103 (Churchill-Livingstone, New York, 1999).

    Google Scholar 

  37. Reeh, P. W. & Steen, K. H. Tissue acidosis in nociception and pain. Prog. Brain Res. 113, 143–151 (1996).

    Article  CAS  Google Scholar 

  38. Krishtal, O. A. & Pidoplichko, V. I. A receptor for protons in the nerve cell membrane. Neuroscience 5, 2325–2327 (1980).

    Article  CAS  Google Scholar 

  39. Bevan, S. & Geppetti, P. Protons: small stimulants of capsaicin-sensitive sensory nerves. Trends Neurosci. 17, 509–512 (1994).

    Article  CAS  Google Scholar 

  40. Sutherland, S. P., Benson, C. J., Adelman, J. P. & McCleskey, E. W. Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc. Natl Acad. Sci. USA 98, 711–716 (2001).

    Article  ADS  CAS  Google Scholar 

  41. Bevan, S. & Yeats, J. Protons activate a cation conductance in a subpopulation of rat dorsal root ganglion neurones. J. Physiol. 433, 145–161 (1991).

    Article  CAS  Google Scholar 

  42. Petersen, M. & LaMotte, R. H. Effect of protons on the inward current evoked by capsaicin in isolated dorsal root ganglion cells. Pain 54, 37–42 (1993).

    Article  CAS  Google Scholar 

  43. Jordt, S. E., Tominaga, M. & Julius, D. Acid potentiation of the capsaicin receptor determined by a key extracellular site. Proc. Natl Acad. Sci. USA 97, 8134–8139 (2000).

    Article  ADS  CAS  Google Scholar 

  44. Waldmann, R. et al. H+-gated cation channels. Ann. NY Acad. Sci. 868, 67–76 (1999).

    Article  ADS  CAS  Google Scholar 

  45. Levine, J. D. & Reichling, D. B. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 59–84 (Churchill-Livingstone, New York, 1999).

    Google Scholar 

  46. Burgess, G. M., Mullaney, I., McNeill, M., Dunn, P. M. & Rang, H. P. Second messengers involved in the mechanism of action of bradykinin in sensory neurons in culture. J. Neurosci. 9, 3314–3325 (1989).

    Article  CAS  Google Scholar 

  47. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl Acad. Sci. USA 93, 15435–15439 (1996).

    Article  ADS  CAS  Google Scholar 

  48. Premkumar, L. S. & Ahern, G. P. Induction of vanilloid receptor channel activity by protein kinase C. Nature 408, 985–990 (2000).

    Article  ADS  CAS  Google Scholar 

  49. Khasar, S. G. et al. A novel nociceptor signaling pathway revealed in protein kinase C epsilon mutant mice. Neuron 24, 253–260 (1999).

    Article  CAS  Google Scholar 

  50. Chuang, H. et al. Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 957–962 (2001).

    Article  ADS  CAS  Google Scholar 

  51. Womack, K. B. et al. Do phosphatidylinositides modulate vertebrate phototransduction? J. Neurosci. 20, 2792–2799 (2000).

    Article  CAS  Google Scholar 

  52. Huang, C. L., Feng, S. & Hilgemann, D. W. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gβγ. Nature 391, 803–806 (1998).

    Article  ADS  CAS  Google Scholar 

  53. Zhang, H., He, C., Yan, X., Mirshahi, T. & Logothetis, D. E. Activation of inwardly rectifying K+ channels by distinct PtdIns(4,5)P2 interactions. Nature Cell Biol. 1, 183–188 (1999).

    Article  CAS  Google Scholar 

  54. McMahon, S. B. & Bennett, D. L. H. in Textbook of Pain (eds Wall, P. D. & Melzack, R.) 105–128 (Harcourt, London, 1999).

    Google Scholar 

  55. Shu, X. & Mendell, L. M. Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci. Lett. 274, 159–162 (1999).

    Article  CAS  Google Scholar 

  56. Ganju, P., O'Bryan, J. P., Der, C., Winter, J. & James, I. F. Differential regulation of SHC proteins by nerve growth factor in sensory neurons and PC12 cells. Eur. J. Neurosci. 10, 1995–2008 (1998).

    Article  CAS  Google Scholar 

  57. Chevesich, J., Kreuz, A. J. & Montell, C. Requirement for the PDZ domain protein, INAD, for localization of the TRP store-operated channel to a signaling complex. Neuron 18, 95–105 (1997).

    Article  CAS  Google Scholar 

  58. Tsunoda, S. & Zuker, C. S. The organization of INAD-signaling complexes by a multivalent PDZ domain protein in Drosophila photoreceptor cells ensures sensitivity and speed of signaling. Cell Calcium 26, 165–171 (1999).

    Article  CAS  Google Scholar 

  59. Malmberg, A. B. & Yaksh, T. L. Hyperalgesia mediated by spinal glutamate or substance P receptor blocked by spinal cyclooxygenase inhibition. Science 257, 1276–1279 (1992).

    Article  ADS  CAS  Google Scholar 

  60. Samad, T. A. et al. Interleukin-1β-mediated induction of Cox-2 in the CNS contributes to inflammatory pain hypersensitivity. Nature 410, 471–475 (2001).

    Article  ADS  CAS  Google Scholar 

  61. Baker, M. D. & Wood, J. N. Involvement of Na+ channels in pain pathways. Trends Pharmacol. Sci. 22, 27–31 (2001).

    Article  CAS  Google Scholar 

  62. England, S., Bevan, S. & Docherty, R. J. PGE2 modulates the tetrodotoxin-resistant sodium current in neonatal rat dorsal root ganglion neurones via the cyclic AMP-protein kinase A cascade. J. Physiol. 495, 429–440 (1996).

    Article  CAS  Google Scholar 

  63. Fitzgerald, E. M., Okuse, K., Wood, J. N., Dolphin, A. C. & Moss, S. J. cAMP-dependent phosphorylation of the tetrodotoxin-resistant voltage-dependent sodium channel SNS. J. Physiol. 516, 433–446 (1999).

    Article  CAS  Google Scholar 

  64. Gold, M. S., Levine, J. D. & Correa, A. M. Modulation of TTX-R INa by PKC and PKA and their role in PGE2-induced sensitization of rat sensory neurons in vitro. J. Neurosci. 18, 10345–10355 (1998).

    Article  CAS  Google Scholar 

  65. Akopian, A. N., Silvilotti, L. & Wood, J. N. A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379, 257–262 (1996).

    Article  ADS  CAS  Google Scholar 

  66. Dib-Hajj, S. D., Tyrrell, L., Black, J. A. & Waxman, S. G. NaN, a novel voltage-gated Na channel, is expressed preferentially in peripheral sensory neurons and downregulated after axotomy. Proc. Natl Acad. Sci. USA 95, 8963–8968 (1998).

    Article  ADS  CAS  Google Scholar 

  67. Tate, S. et al. Two sodium channels contribute to the TTX-R sodium current in primary sensory neurons. Nature Neurosci. 1, 653–655 (1998).

    Article  CAS  Google Scholar 

  68. Akopian, A. N. et al. The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways. Nature Neurosci. 2, 541–548 (1999).

    Article  CAS  Google Scholar 

  69. Zygmunt, P. M. et al. Vanilloid receptors on sensory nerves mediate the vasodilator action of anandamide. Nature 400, 452–457 (1999).

    Article  ADS  CAS  Google Scholar 

  70. Smart, D. et al. The endogenous lipid anandamide is a full agonist at the human vanilloid receptor (hVR1). Br. J. Pharmacol. 129, 227–230 (2000).

    Article  CAS  Google Scholar 

  71. Hwang, S. W. et al. Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc. Natl Acad. Sci. USA 97, 6155–6160 (2000).

    Article  ADS  CAS  Google Scholar 

  72. Szolcsanyi, J. Anandamide and the question of its functional role for activation of capsaicin receptors. Trends Pharmacol. Sci. 21, 203–204 (2000).

    Article  CAS  Google Scholar 

  73. Gu, J. G. & MacDermott, A. B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 (1997).

    Article  ADS  CAS  Google Scholar 

  74. Tognetto, M. et al. Anandamide excites central terminals of dorsal root ganglion neurons via vanilloid receptor-1 activation. J. Neurosci. 21, 1104–1109 (2001).

    Article  CAS  Google Scholar 

  75. Fields, H. L. Pain (McGraw-Hill, New York, 1987).

    Google Scholar 

  76. Lembeck, F. & Gamse, R. Substance P in peripheral sensory processes. Ciba Found. Symp. 91, 35–54 (1982).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH, NIMH and an unrestricted grant from Bristol-Myers Squibb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Julius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Julius, D., Basbaum, A. Molecular mechanisms of nociception. Nature 413, 203–210 (2001). https://doi.org/10.1038/35093019

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35093019

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing