Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

How ‘spin ice’ freezes

Abstract

The large degeneracy of states resulting from the geometrical frustration of competing interactions is an essential ingredient of important problems in fields as diverse as magnetism1, protein folding2 and neural networks3. As first explained by Pauling4, geometrical frustration of proton positions is also responsible for the unusual low-temperature thermodynamics of ice and its measured ‘ground state’ entropy5. Recent work has shown that the geometrical frustration of ice is mimicked by Dy2Ti2O7, a site-ordered magnetic material in which the spins reside on a lattice of corner-sharing tetrahedra where they form an unusual magnetic ground state known as ‘spin ice’6,7,8,9,10,11,12,13. Here we identify a cooperative spin-freezing transition leading to the spin-ice ground state in Dy2Ti2O7. This transition is associated with a very narrow range of relaxation times, and represents a new form of spin-freezing. The dynamics are analogous to those associated with the freezing of protons in ice, and they provide a means through which to study glass-like behaviour and the consequences of frustration in the limit of low disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of frustration in water ice and spin ice.
Figure 2: Temperature dependence of the magnetic susceptibility in the absence of a d.c. magnetic field.
Figure 3: Real part of the a.c. magnetic susceptibility of Dy2Ti2O7 versus temperature for several different fields at 100 Hz.
Figure 4: The imaginary part of the magnetic susceptibility scaled to peak amplitude and frequency for Dy2Ti2O7 at several temperatures and in the absence of a d.c. magnetic field.
Figure 5: The real part of the a.c. magnetic susceptibility of Dy2-xYxTi2O7 as a function of temperature in the absence of a d.c. magnetic field.

Similar content being viewed by others

References

  1. Ramirez, A. P. in Handbook of Magnetic Materials Vol. 13 (ed. Buschow, K. J. H.) 423–520 (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  2. Onuchic, J. N., Luthey-Schulten, Z. & Wolynes, P. G. Theory of protein folding: The energy landscape perspective. Ann. Rev. Phys. Chem. 48, 545–600 (1997).

    Article  ADS  CAS  Google Scholar 

  3. Hopfield, J. J. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Natl Acad. Sci. 81, 3088–3092 (1984).

    Article  ADS  CAS  Google Scholar 

  4. Pauling, L. The Nature of the Chemical Bond 301–304 (Cornell Univ. Press, Ithaca, New York, 1945).

    Google Scholar 

  5. Petrenko, V. F. & Whitworth, R. W. Physics of Ice (Clarendon, Oxford, 1999).

    Google Scholar 

  6. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  ADS  CAS  Google Scholar 

  7. Harris, M. J., Bramwell, S. T., Holdsworth, P. C. W. & Champion, J. D. M. Liquid-gas critical behaviour in a frustrated pyrochlore ferromagnet. Phys. Rev. Lett. 81, 4496–4499 (1998).

    Article  ADS  CAS  Google Scholar 

  8. Bramwell, S. T. & Harris, M. J. Frustration in Ising-type spin models on the pyrochlore lattice. J. Phys. Condens. Matter 10, L215–L220 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).

    Article  ADS  CAS  Google Scholar 

  10. Harris, M. J. Taking the frustration out of ice. Nature 399, 311–312 (1999).

    Article  ADS  CAS  Google Scholar 

  11. Siddharthan, R. et al. Ising pyrochlore magnets: low-temperature properties, “ice rules,” and beyond. Phys. Rev. Lett. 83, 1854–1857 (1999).

    Article  ADS  CAS  Google Scholar 

  12. den Hertog, B. C., Melko, R. G. & Gingras, M. J. P. Long range order at low temperature in dipolar spin ice. Preprint cond-mat/0009225 at 〈http://xxx.lanl.gov〉 (2000).

  13. Gingras, M. J. P. & den Hertog, B. C. Origin of spin ice behavior in Ising pyrochlore magnets with long range dipole interactions: an insight from mean-field theory. Preprint cond-mat/0012275 at 〈http://xxx.lanl.gov〉 (2000).

  14. Kawada, S. Dielectric anisotropy in ice Ih. J. Phys. Soc. Jpn 44, 1881–1886 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Haida, O., Matsuo, T., Hiroshi, S. & Seki, S. Calorimetric study of the glassy state X. Enthalpy relaxation at the glass-transition temperature of hexagonal ice. J. Chem. Thermodyn. 6, 815–825 (1974).

    Article  CAS  Google Scholar 

  16. Giaque, W. F. & Stout, J. W. The entropy of water and the third law of thermodynamics. The heat capacity of ice from 15K to 273K. J. Am. Chem. Soc. 58, 1144–1150 (1936).

    Article  ADS  Google Scholar 

  17. Rosenkranz, S. et al. Crystal-field interaction in the pyrochlore magnet Ho2Ti2O7. J. Appl. Phys. 87, 5914–5916 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Ramirez, A. P., Espinosa, G. P. & Cooper, A. S. Strong frustration and dilution enhanced order in a quasi-2D spin glass. Phys. Rev. Lett. 64, 2070–2073 (1990).

    Article  ADS  CAS  Google Scholar 

  19. Gardner, J. S. Glassy statics and dynamics in the chemically ordered pyrochlore anti-ferromagnet Y2Mo2O7. Phys. Rev. Lett. 83, 211–215 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Schiffer, P. et al. Frustration induced spin freezing in a site-ordered magnet—gadolinium gallium garnet. Phys. Rev. Lett. 74, 2379–2382 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Wills, A. S. Long range ordering and representational analysis of the jarosites. Phys. Rev. B 63, 064430-1–064430-12 (2001).

    Article  ADS  Google Scholar 

  22. Mydosh, J. A. Spin Glasses: An Experimental Introduction (Taylor & Francis, London, 1993).

    Google Scholar 

  23. Reich, D. H., Rosenbaum, T. F. & Aeppli, G. Glassy relaxation without freezing in a random dipolar-coupled Ising magnet. Phys. Rev. Lett. 59, 1969–1972 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Fiorani, D., Tholence, J. & Dorman, J. L. Magnetic properties of small ferromagnetic particles (Fe-Al2O3 granular thin films): Comparison with spin glass properties. J. Phys. C 19, 5495–5507 (1986).

    Article  ADS  CAS  Google Scholar 

  25. Casimir, H. B. G. & du Pré, F. K. Note on the thermodynamic interpretation of paramagnetic relaxation phenomena. Physica 5, 507–511 (1938).

    Article  ADS  CAS  Google Scholar 

  26. Dirkmaat, A. J. et al. Frequency-dependence of the ac susceptibility in the random anisotropy system Dy(P1-xVx)O4. Phys. Rev. B 36, 352–359 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Huser, D., Wenger, L. E., van Duyneveldt, A. J. & Mydosh, J. A. Dynamical behavior of the susceptibility around the freezing temperature in (Eu,Sr)S. Phys. Rev. B 27, 3100–3103 (1983).

    Article  ADS  Google Scholar 

  28. Dekker, C., Arts, A. F. M., de Wijn, H. W., van Duyneveldt, A. J. & Mydosh, J. A. Activated dynamics in a two-dimensional Ising spin glass: Rb2Cu1-xCoxF4. Phys. Rev. B 40, 243–251 (1989).

    Article  Google Scholar 

  29. Bramwell, S. T. et al. Spin correlations in Ho2Ti2O7: A dipolar spin ice system. Phys. Rev. Lett. 87, 047205-1–047205-4 (2001).

    ADS  Google Scholar 

  30. Matsuhira, K., Hinatsu, Y., Tenya, K. & Sakakibara, T. Low temperature magnetic properties of frustrated pyrochlore ferromagnets Ho2Sn2O7 and Ho2Ti2O7. J. Phys. Condens. Matter 12, L649–L656 (2000).

    Article  ADS  CAS  Google Scholar 

  31. Matsuhira, K., Hinatsu, Y. & Sakakibara, T. Novel dynamical magnetic properties in the spin ice compound Dy2Ti2O7. J. Phys. Condens. Matter 13, L737 (2001).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.A. Huse, T. Rosenbaum and J. Banavar for discussions. This work was supported by the Army Research Office.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Schiffer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snyder, J., Slusky, J., Cava, R. et al. How ‘spin ice’ freezes. Nature 413, 48–51 (2001). https://doi.org/10.1038/35092516

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35092516

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing