Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamics of collapsing and exploding Bose–Einstein condensates

Abstract

When atoms in a gas are cooled to extremely low temperatures, they will—under the appropriate conditions—condense into a single quantum-mechanical state known as a Bose–Einstein condensate. In such systems, quantum-mechanical behaviour is evident on a macroscopic scale. Here we explore the dynamics of how a Bose–Einstein condensate collapses and subsequently explodes when the balance of forces governing its size and shape is suddenly altered. A condensate's equilibrium size and shape is strongly affected by the interatomic interactions. Our ability to induce a collapse by switching the interactions from repulsive to attractive by tuning an externally applied magnetic field yields detailed information on the violent collapse process. We observe anisotropic atom bursts that explode from the condensate, atoms leaving the condensate in undetected forms, spikes appearing in the condensate wavefunction and oscillating remnant condensates that survive the collapse. All these processes have curious dependences on time, on the strength of the interaction and on the number of condensate atoms. Although the system would seem to be simple and well characterized, our measurements reveal many phenomena that challenge theoretical models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An example of a ramp applied to the scattering length a, and a plot of the condensate number N versus time after a jump to a negative scattering length.
Figure 2: The collapse time tcollapse versus the scattering length to which the condensate is jumped, acollapse for 6,000-atom condensates.
Figure 3: A burst focus.
Figure 4: Burst energies and energy anisotropies.
Figure 5: Jet images for a series of τevolve values for the conditions of Fig. 1b.
Figure 6: Quantitative jet measurements.

Similar content being viewed by others

References

  1. Dalfovo, F., Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of Bose-Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512 (1999).

    ADS  CAS  Google Scholar 

  2. Ruprecht, P. A., Holland, M. J., Burnett, K. & Edwards, M. Time-dependent solution of the nonlinear Schrödinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704–4711 (1995).

    ADS  CAS  PubMed  Google Scholar 

  3. Gammal, A., Frederico, T. & Tomio, L. Critical number of atoms for attractive Bose-Einstein condensates with cylindrically symmetrical traps. Phys. Rev. A (submitted).

  4. Tiesinga, E., Morerdijk, A. J., Verhaar, B. J. & Stoof, H. T. C. Conditions for Bose-Einstein condensation in magnetically trapped atomic cesium. Phys. Rev. A 46, R1167–R1170 (1992).

    ADS  CAS  PubMed  Google Scholar 

  5. Tiesinga, E., Verhaar, B. J. & Stoof, H. T. C. Threshold and resonance phenomena in ultracold ground-state collisions. Phys. Rev. A 47, 4114–4122 (1993).

    ADS  CAS  PubMed  Google Scholar 

  6. Courteille, Ph., Freeland, R. S., Heinzen, D. J., van Abeelen, F. A. & Verhaar, B. J. Observation of a Feshbach resonance in cold atom scattering. Phys. Rev. Lett. 81, 69–72 (1998).

    ADS  CAS  Google Scholar 

  7. Roberts, J. L. et al. Resonant magnetic field control of elastic scattering in cold 85Rb. Phys. Rev. Lett. 81, 5109–5112 (1998).

    ADS  CAS  Google Scholar 

  8. Vuletić, V., Kerman, A. J., Chin, C. & Chu, S. Observation of low-field Feshbach resonances in collisions of cesium atoms. Phys. Rev. Lett. 82, 1406–1409 (1999).

    ADS  Google Scholar 

  9. Inouye, S. et al. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature 392, 151–154 (1998).

    ADS  CAS  Google Scholar 

  10. Cornish, S. L., Claussen, N. R., Roberts, J. L., Cornell, E. A. & Wieman, C. E. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000).

    ADS  CAS  PubMed  Google Scholar 

  11. Roberts, J. L. et al. Controlled collapse of a Bose-Einstein condensate. Phys. Rev. Lett. 86, 4211–4214 (2001).

    ADS  CAS  PubMed  Google Scholar 

  12. Kagan, Y., Surkov, E. L. & Shlyapnikov, G. V. Evolution and global collapse of trapped Bose condensates under variations of the scattering length. Phys. Rev. Lett. 79, 2604–2607 (1997).

    ADS  CAS  Google Scholar 

  13. Kagan, Y., Muryshev, A. E. & Shlyapnikov, G. V. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 81, 933–937 (1998).

    ADS  CAS  Google Scholar 

  14. Ueda, M. & Huang, K. Fate of a Bose-Einstein condensate with an attractive interaction. Phys. Rev. A 60, 3317–3320 (1999).

    ADS  CAS  Google Scholar 

  15. Saito, H. & Ueda, M. Power laws and collapsing dynamics of a trapped Bose–Einstein condensate with attractive interactions. Phys. Rev. A 63, 043601-8 (2001).

    ADS  Google Scholar 

  16. Saito, H. & Ueda, M. Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with an attractive interaction. Phys. Rev. Lett. 86, 1406–1409 (2001).

    ADS  CAS  PubMed  Google Scholar 

  17. Duine, R. A. & Stoof, H. T. C. Explosion of a collapsing Bose-Einstein condensate. Phys. Rev. Lett. 86, 2204–2207 (2001).

    ADS  CAS  PubMed  Google Scholar 

  18. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: Observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    ADS  CAS  Google Scholar 

  19. Sackett, C. A., Gerton, J. M., Welling, M. & Hulet, R. G. Measurements of collective collapse in a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 82, 876–879 (1999).

    ADS  CAS  Google Scholar 

  20. Gerton, J. M., Strekalov, D., Prodan, I. & Hulet, R. G. Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions. Nature 408, 692–695 (2000).

    ADS  CAS  PubMed  Google Scholar 

  21. Myatt, C. J., Newbury, N. R., Ghrist, R. W., Loutzenhiser, S. & Wieman, C. E. Multiply loaded magneto-optical trap. Opt. Lett. 21, 290–292 (1996).

    ADS  CAS  PubMed  Google Scholar 

  22. Roberts, J. L., Claussen, N. R., Cornish, S. L. & Wieman, C. E. Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance. Phys. Rev. Lett. 85, 728–731 (2000).

    ADS  CAS  PubMed  Google Scholar 

  23. Pérez-Garcia, V. M., Michinel, H., Cirac, J. L., Lewenstein, M. & Zoller, P. Dynamics of Bose-Einstein condensates: Variational solutions of the Gross-Pitaevskii equations. Phys. Rev. A 56, 1424–1432 (1997).

    ADS  Google Scholar 

  24. Pattanayak, A. K., Gammal, A., Sackett, C. A. & Hulet, R. G. Stabilizing an attractive Bose-Einstein condensate by driving a surface collective mode. Phys. Rev. A 63, 033604-4 (2001).

    ADS  Google Scholar 

  25. Stenger, J. et al. Strongly enhanced inelastic collisions in a Bose-Einstein condensate near Feshbach resonances. Phys. Rev. Lett. 82, 2422–2425 (1999).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Thompson for laboratory assistance, and S. Dürr, G. Shlyapnikov, H. Stoof, M. Holland, M. Ueda and R. Duine for discussions. This work was supported by the ONR, NSF, ARO-MURI and NIST. S.L.C. acknowledges the support of a Lindemann Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Donley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donley, E., Claussen, N., Cornish, S. et al. Dynamics of collapsing and exploding Bose–Einstein condensates. Nature 412, 295–299 (2001). https://doi.org/10.1038/35085500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35085500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing