Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitational microlensing by low-mass objects in the globular cluster M22

Abstract

Gravitational microlensing offers a means of determining directly the masses of objects ranging from planets to stars, provided that the distances and motions of the lenses and sources can be determined1,2. A globular cluster observed against the dense stellar field of the Galactic bulge presents ideal conditions for such observations because the probability of lensing is high3 and the distances and kinematics of the lenses and sources are well constrained. The abundance of low-mass objects in a globular cluster is of particular interest, because it may be representative of the very early stages of star formation in the Universe, and therefore indicative of the amount of dark baryonic matter in such clusters. Here we report a microlensing event associated with the globular cluster M22. We determine the mass of the lens to be 0.13+0.03-0.02 solar masses. We have also detected six events that are unresolved in time. If these are also microlensing events, they imply that a non-negligible fraction of the cluster mass resides in the form of free-floating planetary-mass objects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The observed light curve of the time-resolved microlensing event in the I and V bands, and the two best-fitting calculated microlensing light curves.
Figure 2: The unresolved microlensing candidate events.

Similar content being viewed by others

References

  1. Paczyński, B. Gravitational microlensing in the Local Group. Annu. Rev. Astron. Astrophys. 34, 419–459 (1996).

    Article  ADS  Google Scholar 

  2. Schneider, P., Ehlers, J. & Falco, E. E. Gravitational Lenses (Springer, Berlin, 1993).

    Google Scholar 

  3. Paczyński, B. Gravitational Microlensing by the Globular Cluster Stars. Acta Astronomica 44, 235–239 (1994).

    ADS  Google Scholar 

  4. Paresce, F., De Marchi, G. & Romaniello, M. Very low mass stars and white dwarfs in NGC 6397. Astrophys. J. 440, 216–226 (1995).

    Article  ADS  Google Scholar 

  5. Elson, R. A. W., Gilmore, G. F., Santiago, B. X. & Casertano, S. HST observations of the stellar population of the globular cluster Ω Cen. Astron. J. 110, 682–692 (1995).

    Article  ADS  CAS  Google Scholar 

  6. King, I., Anderson, J., Cool, A. M. & Piotto, G. The luminosity function of the globular cluster NGC 6397 near the limit of hydrogen burning. Astrophys. J. 492, L37–L40 (1998).

    Article  ADS  CAS  Google Scholar 

  7. De Marchi, G. & Paresce, F. Low mass stars in globular clusters II. The mass function of M15. Astron. Astrophys. 304, 202–210 (1995).

    ADS  Google Scholar 

  8. Burrows, A., Hubbard, W. B., Saumon, D. & Lunine, J. I. An expanded set of brown dwarf and very low mass star models. Astrophys. J. 406, 158–171 (1993).

    Article  ADS  Google Scholar 

  9. Gilliland, R. L. et al. A lack of planets in 47 Tucanae from a Hubble Space Telescope search. Astrophys. J. 545, L47–L51 (2000).

    Article  ADS  Google Scholar 

  10. Marcy, G. W., Butler, R. P. Planets orbiting other suns. Publ. Astron. Soc. Pacif. 112, 137–140 (2000).

    Article  ADS  Google Scholar 

  11. Alcock, C. et al. The MACHO project: microlensing results from 5.7 years of Large Magellanic Cloud observations. Astrophys. J. 542, 281–307 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Afonso, C. et al. Microlensing towards the Small Magellanic Cloud EROS 2 two-year analysis. Astron. Astrophys. 344, L63–L66 (1999).

    ADS  Google Scholar 

  13. Udalski, A. et al. The optical gravitational lensing experiment. Catalog of microlensing events in the galactic bulge. Acta Astron. 50, 1–65 (2000).

    ADS  Google Scholar 

  14. Yanagisawa, T. et al. Wide-field camera for gravitational microlensing survey: MOA-cam2. Exp. Astron. 10, 519–535 (2000).

    Article  ADS  Google Scholar 

  15. Sahu, K. C. Stars within the Large Magellanic Cloud as potential lenses for observed microlensing events. Nature 370, 275–276 (1994).

    Article  ADS  Google Scholar 

  16. Sahu, K. C. Microlensing events of the LMC are better explained by stars within the LMC than by MACHOs. Publ. Astron. Soc. Pacif. 106, 942–948 (1994).

    Article  ADS  Google Scholar 

  17. Sahu, K. C. & Sahu, M. S. Spectroscopy of MACHO 97-SMC-1: Self-lensing within the Small Magellanic Cloud. Astrophys. J. 508, L147–L150 (1998).

    Article  ADS  Google Scholar 

  18. Cudworth, K. M. & Hansen, R. B. Space velocities of 14 globular clusters. Astron. J. 105, 168–172 (1983).

    Article  ADS  Google Scholar 

  19. Peterson, R. C. & Cudworth, K. M. Proper motions and radial velocities in the globular cluster M22 and the cluster distance. Astrophys. J. 420, 612–631 (1994).

    Article  ADS  Google Scholar 

  20. Stetson, P. B. in Stellar Photometry—Current Techniques and Future Developments (eds Butler, C. J. & Elliot, I.) 291–303 (IAU Colloq. 136, Cambridge Univ. Press, Cambridge, 1993).

    Google Scholar 

  21. Dominik, M. Galactic microlensing with rotating binaries. Astron. Astrophys. 329, 361–374 (1998).

    ADS  Google Scholar 

  22. Paczynski, B. P. Binary source parallactic effect in gravitational micro-lensing. Preprint astro-ph/9711007 at 〈http://xxx.lanl.gov/〉 (1997).

  23. Freeman, K. C., de Vaucouleurs, G., Wainscoat, R. J. & de Vaucouleurs, A. A spectroscopic determination of the velocity dispersion in the Galactic bulge. Astrophys. J. 325, 563–565 (1988).

    Article  ADS  Google Scholar 

  24. Bode, M. F. & Evans, A. E. Classical Novae 5 (Wiley & Sons, Chichester, 1989).

    Google Scholar 

  25. Warner, B. Cataclysmic variable Stars 148 (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  26. Downes, R. et al. A catalog and atlas of cataclysmic variables—the living edition. Publ. Astron. Soc. Pacif. (in the press).

  27. Della Valle, M. & Livio, M. Are microlensing events contaminated by dwarf nova eruptions? Astrophys. J. 457, L77–L79 (1996).

    Article  ADS  Google Scholar 

  28. Samus, N., Kravtsov, V., Pavlov, M., Alcaino, G. & Liller, W. A new photographic colour-magnitude study of M 22 = NGC 6656. Astron. Astrophys. Suppl. Ser. 109, 487–499 (1995).

    ADS  Google Scholar 

  29. Pettersen, B. R. A review of stellar flares and their characteristics. Sol. Phys. 121, 299–312 (1989).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

N.P. is on assignment from the Space Science Department of ESA. We thank H. Duerbeck, J. Valenti, H. Bond, R. Downes and J. Pringle for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash C. Sahu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, K., Casertano, S., Livio, M. et al. Gravitational microlensing by low-mass objects in the globular cluster M22. Nature 411, 1022–1024 (2001). https://doi.org/10.1038/35082507

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35082507

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing