Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ant odometry in the third dimension

Abstract

Desert ants (Cataglyphis) are renowned for their ability to perform large-scale foraging excursions and then return to the nest by path integration. They do so by integrating courses steered and the distances travelled into a continually updated home vector1. Whereas the angular orientation is based on skylight cues2, how the ants gauge the distances travelled has remained largely unclear3,4. Furthermore, almost all studies on path integration in Cataglyphis5,6, as well as in spiders7,8, rodents9, and humans10,11, have aimed at understanding how the animals compute homebound courses in the horizontal plane. Here, we investigate for the first time how an animal's odometer operates when a path integration task has to be accomplished that includes a vertical component. We trained Cataglyphis ants within arrays of uphill and downhill channels, and later tested them on flat terrain, or vice versa. In all these cases, the ants indicated homing distances that corresponded not to the distances actually travelled but to the ground distances; that is, to the sum of the horizontal projections of the uphill and downhill segments of the ants' paths.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The ant's odometer does not record the distance actually travelled along an uphill–downhill path but rather the horizontal projection of that path (that is, the ground distance).
Figure 2: In asymmetrical arrays of uphill and downhill segments ants also use the ground distances.

Similar content being viewed by others

References

  1. Müller, M. & Wehner, R. Path integration in desert ants, Cataglyphis fortis. Proc. Natl Acad. Sci. USA 85, 5287–5290 (1988).

    Article  ADS  Google Scholar 

  2. Wehner, R. in Orientation and Communication in Arthropods (ed. Lehrer, M.) 145–185 (Birkhäuser, Basel, 1997).

    Book  Google Scholar 

  3. Ronacher, B. & Wehner, R. Desert ants Cataglyphis fortis use self-induced optic flow to measure distances travelled. J. Comp. Physiol. A 177, 21–27 (1995).

    Article  Google Scholar 

  4. Ronacher, B., Gallizzi, K., Wohlgemuth, S. & Wehner, R. Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. J. Exp. Biol. 203, 1113–1121 (2000).

    CAS  PubMed  Google Scholar 

  5. Wehner, R. & Wehner, S. Insect navigation: use of maps or Ariadne's thread. Ethol. Ecol. Evol. 2, 27–48 (1990).

    Article  Google Scholar 

  6. Müller, M. & Wehner, R. The hidden spiral: systematic search and path integration in desert ants, Cataglyphis fortis. J. Comp. Physiol. A 175, 525–530 (1994).

    Article  Google Scholar 

  7. Seyfarth, E. A., Hergenröder, R., Ebbes, H. & Barth, F. G. Idiothetic orientation of a wandering spider: compensation of detours and estimates of goal distance. Behav. Ecol. Sociobiol. 11, 139–148 (1982).

    Article  Google Scholar 

  8. Görner, P. & Claas, B. in Neurobiology of Arachnids (ed. Barth, F. G.) 275–297 (Springer, Berlin, 1985).

    Book  Google Scholar 

  9. Etienne, A. S., Maurer, R. & Seguinot, V. Path integration in mammals and its interaction with visual landmarks. J. Exp. Biol. 199, 201–209 (1996).

    CAS  PubMed  Google Scholar 

  10. Sauve, J. P. L’orientation spatiale: Formalisation d’un modèle de mémorisation égocentrée et expérimentation chez l’homme. PhD thesis, Univ. Aix-Marseille (1989).

    Google Scholar 

  11. Loomis, J. M. et al. Nonvisual navigation by blind and sighted: assessment of path integration ability. J. Exp. Psychol. Gen. 122, 73–91 (1993).

    Article  CAS  Google Scholar 

  12. Wehner, R. in Neural basis of Behavioural Adaptation (eds Schildberger, K. & Elsner, N.) 103–143 (G. Fischer, Stuttgart, 1994).

    Google Scholar 

  13. Srinivasan, M. V., Zhang, S. W., Lehrer, M. & Collett, T. S. Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996).

    CAS  PubMed  Google Scholar 

  14. Srinivasan, M. V., Zhang, S. W. & Bidwell, N. J. Visually mediated odometry in honeybees. J. Exp. Biol. 200, 2513–2522 (1997).

    CAS  PubMed  Google Scholar 

  15. Srinivasan, M. V., Zhang, S., Altwein, M. & Tautz, J. Honeybee navigation: nature and calibration of the ‘odometer’. Science 287, 851–853 (2000).

    Article  ADS  CAS  Google Scholar 

  16. von Frisch, K. The Dance Language and Orientation of Bees (Harvard Univ. Press, Cambridge, Massachusetts, 1967).

    Google Scholar 

  17. Heran, H. Ein Beitrag zur Frage nach der Wahrnehmungsgrundlage der Entfernungsweisung der Bienen (Apis mellifica L.). Z. Vergl. Physiol. 38, 168–218 (1956).

    Article  Google Scholar 

  18. Taylor, C. R., Caldwell S. L. & Rowntree, V. J. Running up and down hills: some consequences of size. Science 178, 1096–1097 (1972).

    Article  ADS  CAS  Google Scholar 

  19. Schäfer, M. & Wehner, R. Loading does not affect measurement of walking distance in desert ants Cataglyphis fortis. Verh. Deutsch. Zool. Ges. 86, 270 (1993).

    Google Scholar 

  20. Esch, H. E. & Burns, J. E. Distance estimation by foraging honeybees. J. Exp. Biol. 199, 155–162 (1996).

    CAS  PubMed  Google Scholar 

  21. Mittelstaedt, H. & Mittelstaedt, M. Mechanismen der Orientierung ohne richtende Aussenreize. Fortschr. Zool. 21, 46–58 (1973).

    Google Scholar 

  22. Markl, H. Borstenfelder an den Gelenken als Schweresinnesorgane bei Ameisen und anderen Hymenopteren. Z. Vergl. Physiol. 45, 475–569 (1962).

    Article  Google Scholar 

  23. Hill, D. E. Orientation by jumping spiders of the genus Phidippus (Araneae: Salticidae) during the pursuit of prey. Behav. Ecol. Sociobiol. 5, 301–322 (1979).

    Article  Google Scholar 

  24. Bardunias, P. M. & Jander, R. Three dimensional path integration in the house mouse. Naturwissenschaften 87, 532–534 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Wehner, R. & Srinivasan, M. V. Searching behaviour of desert ants, genus Cataglyphis (Formicidae, Hymenoptera). J. Comp. Physiol. 142, 315–338 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Gansner for her help in running the experiments and the members of the Zurich–Maharès crew for their co-operation in the field. We further thank H. Heise for the construction of the channel arrays and U. Menzi and H. Michel for their help in designing the figures and preparing the manuscript. Financial support came from the Swiss National Science foundation and the G. & A. Claraz foundations, grants to R.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Ronacher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wohlgemuth, S., Ronacher, B. & Wehner, R. Ant odometry in the third dimension. Nature 411, 795–798 (2001). https://doi.org/10.1038/35081069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing