Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The four final rotation states of Venus

Abstract

Venus rotates very slowly on its axis in a retrograde direction, opposite to that of most other bodies in the Solar System1. To explain this peculiar observation, it has been generally believed2,3,4,5,6 that in the past its rotational axis was itself rotated to 180° as a result of core–mantle friction inside the planet, together with atmospheric tides. But such a change has to assume a high initial obliquity (the angle between the planet's equator and the plane of the orbital motion). Chaotic evolution7, however, allows the spin axis to flip for a large set of initial conditions6,8. Here we show that independent of uncertainties in the models, terrestrial planets with dense atmosphere like Venus can evolve into one of only four possible rotation states. Moreover, we find that most initial conditions will drive the planet towards the configuration at present seen at Venus, albeit through two very different evolutionary paths. The first is the generally accepted view whereby the spin axis flips direction2,3,4,5,6. But we have also found that it is possible for Venus to begin with prograde rotation (the same direction as the other planets) yet then develop retrograde rotation while the obliquity goes towards zero9: a rotation of the spin axis is not necessary in this case.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Possible final spin states of Venus.
Figure 2: Numerical simulations of the final states of Venus' spin in the absence of planetary perturbations.
Figure 3: Numerical simulations of the final states of Venus' spin when planetary perturbations are included.
Figure 4: Probability of capture in one of Venus' final states: orange, F+0; yellow, F-0; violet, F-π.

Similar content being viewed by others

References

  1. Carpenter, R. L. A radar determination of the rotation of Venus. Astron. J. 75, 61–66 (1970).

    Article  ADS  Google Scholar 

  2. Lago, B. & Cazenave, A. Possible dynamical evolution of the rotation of Venus since formation. Moon Planets 21, 127–154 (1979).

    Article  ADS  Google Scholar 

  3. Dobrovolskis, A. R. Atmospheric tides and the rotation of Venus. II - Spin evolution. Icarus 41, 18–35 (1980).

    Article  ADS  Google Scholar 

  4. Shen, M. & Zhang, C. Z. Dynamical evolution of the rotation of Venus. Earth Moon Planets 43, 275–287 (1989).

    Article  ADS  Google Scholar 

  5. McCue, J. & Dormand, J. R. Evolution of the spin of Venus. Earth Moon Planets 63, 209–225 (1993).

    Article  ADS  Google Scholar 

  6. Yoder, C. F. Venus II: Geology, Geophysics, Atmosphere, and Solar Wind Environment 1087 (Univ. Arizona Press, Tucson, 1997).

    Google Scholar 

  7. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993).

    Article  ADS  Google Scholar 

  8. Néron de Surgy, O. Influence des Effets Dissipatifs sur les Variations à Long Terme des Obliquités Planétaires. Thesis, Observatoire de Paris (1996).

    Google Scholar 

  9. Kundt, W. Spin and atmospheric tides of Venus. Astron. Astrophys. 60, 85–91 (1977).

    ADS  Google Scholar 

  10. Néron de Surgy, O. & Laskar, J. On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997).

    ADS  Google Scholar 

  11. Yoder, C. F. Venus' free obliquity. Icarus 117, 250–286 (1995).

    Article  ADS  Google Scholar 

  12. Chapman, S. & Lindzen, R. Atmospheric Tides. Thermal and Gravitational (Reidel, Dordrecht, 1970).

    Google Scholar 

  13. Kaula, W. Tidal dissipation by solid friction and the resulting orbital evolution. Rev. Geophys. 2, 661–685 (1964).

    Article  ADS  Google Scholar 

  14. Munk, W. H. & MacDonald, G. J. F. The Rotation of the Earth, a Geophysical Discussion (Cambridge Univ. Press, Cambridge, 1960).

    MATH  Google Scholar 

  15. Rochester, M. G. The secular decrease of obliquity due to dissipative core-mantle coupling. Geophys. J. R. Astron. Soc. 46, 109–126 (1976).

    Article  ADS  Google Scholar 

  16. Goldreich, P. & Peale, S. J. The obliquity of Venus. Astron. J. 75, 273–284 (1970).

    Article  ADS  Google Scholar 

  17. Pais, M. A. et al. Late Precambrian paradoxical glaciation and obliquity of the Earth - a discussion of dynamical constraints. Earth Planet. Sci. Lett. 174, 155–171 (1999).

    Article  CAS  ADS  Google Scholar 

  18. Aoki, S. Friction between mantle and core of the Earth as a cause of the secular change in obliquity. Astron. J. 74, 284–291 (1969).

    Article  ADS  Google Scholar 

  19. Gold, T. & Soter, S. Atmospheric tides and the resonant rotation of Venus. Icarus 11, 356–366 (1969).

    Article  ADS  Google Scholar 

  20. Dobrovolskis, A. R. & Ingersoll, A. P. Atmospheric tides and the rotation of Venus. I - tidal theory and the balance of torques. Icarus 41, 1–17 (1980).

    Article  ADS  Google Scholar 

  21. Davies, M. E. et al. The rotation period, direction of the north pole, and geodetic control network of Venus. J. Geophys. Res. 97, 13141–13151 (1992).

    Article  ADS  Google Scholar 

  22. Dickey, J. O. Lunar laser ranging - a continuing legacy of the Apollo program. Science 265, 482–490 (1994).

    Article  CAS  ADS  Google Scholar 

  23. Walker, J. C. G. Evolution of the atmosphere of Venus. J. Atmos. Sci. 32, 1248–1256 (1975).

    Article  CAS  ADS  Google Scholar 

  24. Pepin, R. O. On the origin and early evolution of terrestrial planet atmospheres and meteoritic volatiles. Icarus 92, 2–79 (1991).

    Article  CAS  ADS  Google Scholar 

  25. Hunten, D. M. Atmosphere evolution of the terrestrial planets. Science 259, 915–920 (1993).

    Article  CAS  ADS  Google Scholar 

  26. Kasting, J. F. Earth's early atmosphere. Science 259, 920–926 (1993).

    Article  CAS  ADS  Google Scholar 

  27. Laskar, J. The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).

    Article  ADS  Google Scholar 

  28. Konopliv, A. S. et al. Venus gravity and topography: 60th degree and order model. Geophys. Res. Lett. 20, 2403–2406 (1993).

    Article  ADS  Google Scholar 

  29. Goldreich, P. & Peale, S. Spin-orbit coupling in the solar system. Astron. J. 71, 425–438 (1966).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank O. Néron de Surgy, M. Greff, S. Peale and C. F. Yoder for discussions. This work was supported by PNP-CNRS and by the Fundação para a Ciência e Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacques Laskar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Correia, A., Laskar, J. The four final rotation states of Venus. Nature 411, 767–770 (2001). https://doi.org/10.1038/35081000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35081000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing