Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fabry - Perot interference in a nanotube electron waveguide

Abstract

The behaviour of traditional electronic devices can be understood in terms of the classical diffusive motion of electrons. As the size of a device becomes comparable to the electron coherence length, however, quantum interference between electron waves becomes increasingly important, leading to dramatic changes in device properties1,2,3,4,5,6,7,8. This classical-to-quantum transition in device behaviour suggests the possibility for nanometer-sized electronic elements that make use of quantum coherence1,2,7,8. Molecular electronic devices are promising candidates for realizing such device elements because the electronic motion in molecules is inherently quantum mechanical9,10 and it can be modified by well defined chemistry11,12,13. Here we describe an example of a coherent molecular electronic device whose behaviour is explicitly dependent on quantum interference between propagating electron waves—a Fabry–Perot electron resonator based on individual single-walled carbon nanotubes with near-perfect ohmic contacts to electrodes. In these devices, the nanotubes act as coherent electron waveguides14,15,16, with the resonant cavity formed between the two nanotube–electrode interfaces. We use a theoretical model based on the multichannel Landauer–Büttiker formalism17,18,19 to analyse the device characteristics and find that coupling between the two propagating modes of the nanotubes caused by electron scattering at the nanotube–electrode interfaces is important.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Zero-bias differential conductance (∂I/∂V) of a 200-nm SWNT device plotted against gate voltage (Vg).
Figure 2: Two-dimensional ∂I/∂V plots as a function of V and Vg measured at T = 4 K.
Figure 3: A theoretical model that explains the observed interference patterns.
Figure 4: The calculated (left, shown in red) and measured (right, shown in blue) two-dimensional ∂I/∂V plots as a function of V and Vg for a 220-nm SWNT device.

Similar content being viewed by others

References

  1. Ando, T. et al. Mesoscopic Physics and Electronics (Springer, Berlin, 1998).

    Book  Google Scholar 

  2. Datta, S. Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  3. van Wees, B. J. et al. Observation of zero-dimensional states in a one-dimensional electron interferometer. Phys. Rev. Lett. 62, 2523–2526 (1989).

    Article  ADS  Google Scholar 

  4. Crommie, M., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  CAS  Google Scholar 

  5. Ji, Y. et al. Phase evolution in a Kondo-correlated system. Science 290, 779–783 (2000).

    Article  ADS  CAS  Google Scholar 

  6. Topinka, M. A. et al. Imaging coherent electron flow from a quantum point contact. Science 289, 2323–2326 (2000).

    Article  ADS  CAS  Google Scholar 

  7. Manoharan, H. C., Lutz, C. P. & Eigler, D. M. Quantum mirages formed by coherent projection of electronic structure. Nature 403, 512–515 (2000).

    Article  ADS  CAS  Google Scholar 

  8. Debray, P. et al. Ballistic electron transport in stubbed quantum waveguides: Experiment and theory. Phys. Rev. B 61, 10950–10958 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Joachim, C., Gimzewski, J. K. & Aviram, A. Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000).

    Article  ADS  CAS  Google Scholar 

  10. Park, H. et al. Nano-mechanical oscillations in a single-C60 transistor. Nature 407, 57–60 (2000).

    Article  ADS  CAS  Google Scholar 

  11. Chen, J., Reed, M. A., Rawlett, A. M. & Tour, J. M. Large on-off ratios and negative differential resistance in a molecular electronic device. Nature 286, 1550–1552 (1999).

    CAS  Google Scholar 

  12. Collier, C. P. et al. A [2]catenane-based solid state electronically reconfigurable switch. Science 289, 1172–1175 (2000).

    Article  ADS  CAS  Google Scholar 

  13. Bockrath, M. et al. Resonant electron scattering by defects in single-walled carbon nanotubes. Science 291, 283–285 (2001).

    Article  ADS  CAS  Google Scholar 

  14. White, C. T. & Todorov, T. N. Carbon nanotubes as long ballistic conductors. Nature 393, 240–242 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Frank, S., Poncharal, P., Wang, Z. L. & De Heer, W. A. Carbon nanotube quantum resistors. Science 280, 1744–1746 (1998).

    Article  ADS  CAS  Google Scholar 

  16. Dekker, C. Carbon nanotubes as molecular quantum wires. Phys. Today 52 (5), 22–28 (1999).

    Article  ADS  Google Scholar 

  17. Büttiker, M., Imry, Y., Landauer, R. & Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 31, 6207–6215 (1985).

    Article  ADS  Google Scholar 

  18. Büttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986).

    Article  ADS  Google Scholar 

  19. Cahay, M., McLennan, M. & Datta, S. Conductance of an array of elastic scatterers: A scattering-matrix approach. Phys. Rev. B 37, 10125–10136 (1988).

    Article  ADS  CAS  Google Scholar 

  20. Tans, S. J., Verschueren, A. R. M. & Dekker, C. Room-temperature transistor based on a single carbon nanotube. Nature 393, 49–52 (1998).

    Article  ADS  CAS  Google Scholar 

  21. McEuen, P. L. et al. Disorder, pseudospins, and backscattering in carbon nanotubes. Phys. Rev. Lett. 83, 5098–5101 (1999).

    Article  ADS  CAS  Google Scholar 

  22. Bockrath, M. et al. Single-electron transport in ropes of carbon nanotubes. Science 275, 1922–1925 (1997).

    Article  CAS  Google Scholar 

  23. Tans, S. J. et al. Individual single-wall carbon nanotubes as quantum wires. Nature 386, 474–476 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Tans, S. J., Devoret, M. H., Groeneveld, R. J. A. & Dekker, C. Electron–electron correlations in carbon nanotubes. Nature 394, 761–764 (1998).

    Article  ADS  CAS  Google Scholar 

  25. Nygard, J., Cobden, D. H. & Lindelof, P. E. Kondo physics in carbon nanotubes. Nature 408, 342–346 (2000).

    Article  ADS  CAS  Google Scholar 

  26. Venema, L. C. et al. Imaging electron wave functions of quantized energy levels in carbon nanotubes. Science 283, 52–55 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Bachtold, A. et al. Aharonov-Bohm oscillations in carbon nanotubes. Nature 397, 673–675 (1999).

    Article  ADS  CAS  Google Scholar 

  28. Tsukagoshi, K., Alphenaar, B. W. & Ago, H. Coherent transport of electron spin in a ferromagnetically contacted carbon nanotube. Nature 401, 572–574 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Hecht, E. Optics (Addison-Wesley, Reading, 1987).

    Google Scholar 

  30. Sohn, L. L., Kouwenhoven, L. P. & Schön, G. Mesoscopic Electron Transport (Kluwer, Dordrecht, 1997).

    Book  Google Scholar 

Download references

Acknowledgements

We thank C. M. Lieber for providing facilities to synthesize SWNTs; and C. M. Lieber, B. I. Halperin, E. J. Heller and C. Marcus for discussions and advice. This work is supported by NSF and ONR (M.T.) and the Dreyfus Foundation, NSF, and Harvard University (H.P.). J.H.H. was supported by NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongkun Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, W., Bockrath, M., Bozovic, D. et al. Fabry - Perot interference in a nanotube electron waveguide. Nature 411, 665–669 (2001). https://doi.org/10.1038/35079517

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35079517

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing