Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago

Abstract

Global climate change around 3–4 Myr ago is thought to have influenced the evolution of hominids, via the aridification of Africa, and may have been the precursor to Pleistocene glaciation about 2.75 Myr ago. Most explanations of these climatic events involve changes in circulation of the North Atlantic Ocean due to the closing of the Isthmus of Panama. Here we suggest, instead, that closure of the Indonesian seaway 3–4 Myr ago could be responsible for these climate changes, in particular the aridification of Africa. We use simple theory and results from an ocean circulation model to show that the northward displacement of New Guinea, about 5 Myr ago, may have switched the source of flow through Indonesia—from warm South Pacific to relatively cold North Pacific waters. This would have decreased sea surface temperatures in the Indian Ocean, leading to reduced rainfall over eastern Africa. We further suggest that the changes in the equatorial Pacific may have reduced atmospheric heat transport from the tropics to higher latitudes, stimulating global cooling and the eventual growth of ice sheets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the Indonesian-throughflow region.
Figure 2: Map of the Pacific showing temperature at the σ = 25.5 (1,025.5 kg m-3) isopycnal, in the thermocline.
Figure 3: Palaeo-environments in eastern Africa as a function of time and latitude since 15 Myr ago.
Figure 4: The difference in temperatures at 100 m depth between the two ocean GCM runs of ref.
Figure 5: Plots of the Indonesian throughflow θ(c;g,b) for a δ-function zonal flow incident on the western boundary of the Pacific at latitude c.

Similar content being viewed by others

References

  1. Audley-Charles, M. G. in Thrust and Nappe Tectonics 407–416 (Geological Society, London, 1981).

    Google Scholar 

  2. Veevers, J. J., Falvey, D. A. & Robins, S. Timor Trough and Australia: facies show topographic wave migrated 80 km during the past 3 m.y. Tectonophysics 45, 217–227 (1978).

    Article  ADS  Google Scholar 

  3. Abbott, M. J. & Chamalaun, F. H. in The Geology and Tectonics of Eastern Indonesia (eds Barber, A. J. & Wiryosujono, S.) 253–268 (Spec. Publ. No. 2, Geological Research and Development Centre, Bandung, 1981).

    Google Scholar 

  4. Gordon, A. L. & Fine, R. A. Pathways of water between the Pacific and Indian oceans in the Indonesian seas. Nature 379, 146–149 (1996).

    Article  ADS  CAS  Google Scholar 

  5. Gordon, A. L., Susanto, R. D. & Ffield, A. Throughflow within the Makassar strait. Geophys. Res. Lett. 26, 3325–3328 (1999).

    Article  ADS  Google Scholar 

  6. DeMets, C., Gordon, R. G., Argus, D. F. & Stein, S. Effects of a recent revisions to geomagnetic reversal timescale on estimates of current plate motions. Geophys. Res. Lett. 21, 2191–2194 (1994).

    Article  ADS  Google Scholar 

  7. Besse, J. & Courtillot, V. Revised and synthetic apparent polar wander paths of the African, Eurasian, North American and Indian plates, and true polar wander since 200 Ma. J. Geophys. Res. 96, 4029–2050 (1991).

    Article  ADS  Google Scholar 

  8. Hall, R., Audley-Charles, M. G., Banner, F. T., Hidayat, S. & Tobing, S. L. Late Paleogene-Quaternary geology of Halmahera, eastern Indonesia: initiation of a volcanic island arc. J. Geol. Soc. Lond 145, 577–590 (1988).

    Article  Google Scholar 

  9. Nichols, G. J. & Hall, R. Basin formation and Neogene sedimentation in a backarc setting, Halmahera, eastern Indonesia. Mar. Petrol. Geol. 8, 50–61 (1991).

    Article  Google Scholar 

  10. Morey, S. L., Shriver, J. F. & O'Brien, J. J. The effects of Halmahera on the Indonesian Throughflow. J. Geophys. Res. 104, 23281–23296 (1999).

    Article  ADS  Google Scholar 

  11. Puntodewo, S. S. O. et al. GPS measurements of crustal deformation within the Pacific-Australia plate boundary in Irian Jaya, Indonesia. Tectonophysics 237, 141–153 (1994).

    Article  ADS  Google Scholar 

  12. Rangin, C. et al. Plate convergence measured by GPS across the Sundaland/Philippine Sea plate deformed boundary: the Philippines and eastern Indonesia. Geophys. J. Int. 139, 296–316 (1999).

    Article  ADS  Google Scholar 

  13. Silver, E. A. & Moore, J. C. The northern Molucca Sea collision zone, Indonesia. J. Geophys. Res. 83, 1681–1691 (1978).

    Article  ADS  Google Scholar 

  14. Charlton, T. R. A plate tectonic model of the eastern Indonesian collision zone. Nature 319, 394–396 (1986).

    Article  ADS  Google Scholar 

  15. Daly, M. C., Cooper, M. A., Wilson, I., Smith, D. G. & Hooper, B. G. D. Cenozoic plate tectonics and basin evolution in Indonesia. Mar. Petrol. Geol. 8, 2–21 (1991).

    Article  Google Scholar 

  16. Hall, R. in Tectonic Evolution of Southeast Asia (eds Hall, R. & Blundell, D.) 153–184 (Spec. Publ. 106, Geological Society, London, 1996).

    Google Scholar 

  17. Packham, G. in Tectonic Evolution of Southeast Asia (eds Hall, R. & Blundell, D.) 123–152 (Spec. Publ. 106, Geological Society, London, 1996).

    Google Scholar 

  18. Rangin, C., Jolivet, L., Pubellier, M. & the Tethys Pacific working group. A simple model for the tectonic evolution of southeast Asia and Indonesia region for the past 43 m.y. Bull. Soc. Géol. Fr. VI, 889–905 (1990).

    Article  Google Scholar 

  19. Chappell, J. & Veeh, H. H. Late Quaternary tectonic movements and sea-level changes at Timor and Atauro Island. Geol. Soc. Am. Bull. 89, 356–368 (1978).

    Article  ADS  CAS  Google Scholar 

  20. deMenocal, P. B. Plio-Pleistocene African climate. Science 270, 53–59 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Bonnefille, R. in The Evolution of the East Asia Environment Vol. II, Palaeobotany, Palaeozoology, and Palaeoanthropology (ed. Whyte, R. O.) 579–612 (Univ. Hong Kong, 1984).

    Google Scholar 

  22. Hill, A. in Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 178–193 (Yale Univ. Press, 1995).

    Google Scholar 

  23. Leakey, M. G. et al. Lothagam: A record of faunal change in the late Miocene of East Africa. J. Vert. Paleontol. 16, 556–570 (1996).

    Article  Google Scholar 

  24. Yemane, K., Bonnefille, R. & Faure, H. Paleoclimatic and tectonic implications of Neogene microflora for the northwestern Ethiopian highlands. Nature 318, 653–656 (1985).

    Article  ADS  Google Scholar 

  25. WoldeGabriel, G. et al. Ecological and temporal placement of the early Pliocene hominids at Aramis, Ethiopia. Nature 371, 330–333 (1994).

    Article  ADS  CAS  Google Scholar 

  26. Bonnefille, R. Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 299–310 (Yale Univ. Press, 1995).

    Google Scholar 

  27. Wesselman, H. B. Paleoclimate and Evolution with Emphasis on Human Origins (eds Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 356–368 (Yale Univ. Press, New Haven, CT, 1995).

    Google Scholar 

  28. Bonnefille, R., Vincens, A. & Buchet, G. Palynology, stratigraphy and palaeoenvironment of a Pliocene hominid site (2.9-3.3 M. Y.) at Hadar, Ethiopia. Palaeoclim. Palaeogeogr. Palaeoecol. 60, 249–281 (1987).

    Article  ADS  Google Scholar 

  29. de Heinzelin, J. et al. Environment and behavior of 2.5-million-year-old Bouri hominids. Science 284, 625–629 (1999).

    Article  ADS  CAS  Google Scholar 

  30. Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. & Sarnthein, M. Onset of permanent stratification in the subarctic Pacific Ocean. Nature 401, 779–782 (1999).

    Article  ADS  CAS  Google Scholar 

  31. Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620–623 (1984).

    Article  ADS  CAS  Google Scholar 

  32. Gordon, A. L. Interocean exchange of thermocline water. J. Geophys. Res. 91, 5037–5046 (1986).

    Article  ADS  Google Scholar 

  33. Rodgers, K. B., Latif, M. & Legutke, S. Sensitivity of equatorial Pacific and Indian Ocean watermasses to the position of the Indonesian throughflow. Geophys. Res. Lett. 27, 2941–2945 (2000).

    Article  ADS  Google Scholar 

  34. Hastenrath, S., Nicklis, A. & Greischar, L. Atmospheric-hydrospheric mechanisms of climate anomalies in the western equatorial Indian Ocean. J. Geophys. Res. 98, 20219–20235 (1993).

    Article  ADS  Google Scholar 

  35. Reverdin, G., Cadet, D. L. & Gutzler, D. Interannual displacements of convection and surface circulation over the equatorial Indian Ocean. Q. J. R. Meteorol. Soc. 112, 43–67 (1986).

    Article  ADS  Google Scholar 

  36. Goddard, L. & Graham, N. E. Importance of the Indian Ocean for simulating rainfall anomalies over eastern and southern Africa. J. Geophys. Res. 104, 19099–19116 (1999).

    Article  ADS  Google Scholar 

  37. Indeje, M., Semazzi, F. H. M. & Ogallo, L. J. ENSO signals in East African rainfall seasons. Int. J. Climatol. 20, 19–46 (2000).

    Article  Google Scholar 

  38. Latif, M., Dommenget, D., Dima, D. & Grotzner, A. The role of Indian Ocean sea surface temperature in forcing East African rainfall anomalies during December/January 1997/98. J. Clim. 12, 3497–3504 (1999).

    Article  ADS  Google Scholar 

  39. Cane, M. A. & du Penhoat, Y. The effect of islands on low frequency equatorial motions. J. Mar. Res. 40, 937–962 (1982).

    Google Scholar 

  40. Clarke, A. J. On the reflection and transmission of low-frequency energy at the irregular western Pacific Ocean boundary. J. Geophys. Res. 96, 3289–3305 (1991).

    Article  ADS  Google Scholar 

  41. du Penhoat, Y. & Cane, M. A. Effect of low-latitude western boundary gaps on the reflection of equatorial motions. J. Geophys. Res. 96, 3307–3322 (1991).

    Article  ADS  Google Scholar 

  42. Haug, G. H. & Tiedemann, R. Effect of the formation of the Isthmus of Panama on Atlantic thermohaline circulation. Nature 393, 673–676 (1998).

    Article  ADS  CAS  Google Scholar 

  43. Cane, M. A. A role for the tropical Pacific. Science 282, 59–60 (1998).

    Article  CAS  Google Scholar 

  44. Johnson, J. C. & McPhaden, M. J. Interior pycnocline flow from the subtropical to the equatorial Pacific Ocean. J. Phys. Oceanogr. 29, 3073–3089 (1999).

    Article  ADS  Google Scholar 

  45. Dow, D. B. A Geological Synthesis of Papua New Guinea (Geol. Geophys. Bull. 201, Bureau of Mineral Resources, Australian Govt Publication Service, Canberra, 1977).

    Google Scholar 

  46. Smith, I. E. & Davies, H. L. Geology of the Southeast Papuan Mainland (Geol. Geophys. Bull. 165, Bureau of Mineral Resources, Australian Govt Publication Service, Canberra, 1976).

    Google Scholar 

  47. Fedorov, A. V. & Philander, S. G. Is El Niño changing? Science 288, 1997–2002 (2000).

    Article  ADS  CAS  Google Scholar 

  48. Chaisson, W. P. & Ravelo, A. C. Pliocene development of the east-west hydrographic gradient in the equatorial Pacific. Paleoceanography 15, 497–505 (2000).

    Article  ADS  Google Scholar 

  49. Trenberth, K. E. et al. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103, 14291–14324 (1998).

    Article  ADS  Google Scholar 

  50. Moore, D. W. & Philander, S. G. H. in The Sea Vol. 6 (eds Goldberg, E. D., McCave, I. N., O'Brien, J. J. & Steele, J. H.) 319–361 (Wiley, New York, 1977).

    Google Scholar 

  51. Cane, M. A. & Sarachik, E. S. Forced baroclinic ocean motion II: The equatorial unbounded case. J. Mar. Res. 35, 395–432 (1977).

    Google Scholar 

  52. Levitus, S. & Boyer, T. P. World Ocean Atlas 1994 Vol. 4, Temperature (US Dept of Commerce, Washington DC, 1994).

    Google Scholar 

  53. Bonnefille, R. Evidence for a cooler and drier climate in the Ethiopian uplands toward 2.5 Myr ago. Nature 303, 487–491 (1983).

    Article  ADS  Google Scholar 

  54. Leakey, M. G., Feibel, C. S., MacDougall, I. & Walker, A. New four-million-year-old hominid species from Kanapoi and Allia Bay, Kenya. Nature 376, 565–571 (1995).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Rodgers for providing the data for Fig. 4 in advance of publication. We also thank A. L. Gordon, P. deMenocal, H. Davies, L. Goddard, J. S. Godfrey, G. Krahmann, R. McCaffrey, N. Naik, S. G. Philander, M. Pubellier and K. Rodgers for help with figures, guidance and timely inspiration. M.A.C. was supported in part by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Cane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cane, M., Molnar, P. Closing of the Indonesian seaway as a precursor to east African aridification around 3–4 million years ago. Nature 411, 157–162 (2001). https://doi.org/10.1038/35075500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35075500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing