Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A phenomenological description of space-time noise in quantum gravity

Abstract

Space-time ‘foam’ is a geometric picture of the smallest size scales in the Universe, which is characterized mainly by the presence of quantum uncertainties in the measurement of distances. All quantum-gravity theories should predict some kind of foam1,2, but the description of the properties of this foam varies according to the theory, thereby providing a possible means of distinguishing between such theories. I previously showed3 that foam-induced distance fluctuations would introduce a new source of noise to the measurements of gravity-wave interferometers, but the theories are insufficiently developed4 to permit detailed predictions that would be of use to experimentalists. Here I propose a phenomenological approach that directly describes space-time foam, and which leads naturally to a picture of distance fluctuations that is independent of the details of the interferometer. The only unknown in the model is the length scale that sets the overall magnitude of the effect, but recent data5 already rule out the possibility that this length scale could be identified with the ‘string length’ (10-34 m < Ls < 10-33 m). Length scales even smaller than the ‘Planck length’ (LP ≈ 10-35 m) will soon be probed experimentally.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A qualitative (or at best semi-quantitative) comparison between the sensitivity of some interferometers and types of strain-noise power spectra.

Similar content being viewed by others

References

  1. Wheeler, J. A. From relativity to mutability. Revista Mexicana De Fisica 23, 1–57 (1974).

    MathSciNet  Google Scholar 

  2. Hawking, S. W. Spacetime foam. Nuc. Phys. B 144, 349–362 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  3. Amelino-Camelia, G. Gravity-wave interferometers as quantum-gravity detectors. Nature 398, 216–218 (1999).

    Article  ADS  CAS  Google Scholar 

  4. Amelino-Camelia, G. Gravity-wave interferometers as probes of a low-energy effective quantum gravity. Phys. Rev. D 62, 024015-1–024015-18 (2000).

    Article  ADS  Google Scholar 

  5. Abramovici, A. et al. Improved sensitivity in a gravitational wave interferometer and implications for LIGO. Phys. Lett. A 218, 157–163 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Ahluwalia, D. V. Quantum gravity: testing time for theories. Nature 398, 199 (1999).

    Article  ADS  Google Scholar 

  7. Ng, Y. J. & van Dam, H. Measuring the foaminess of space-time with gravity-wave interferometers. Found. Phys. 30, 795–805 (2000).

    Article  Google Scholar 

  8. Amelino-Camelia, G. Are we at the dawn of quantum-gravity phenomenology? Lect. Notes Phys. 541, 1–49 (2000).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  9. Green, M. B., Schwarz, J. H. & Witten, E. Superstring Theory (Cambridge Univ. Press, Cambridge, 1987).

    MATH  Google Scholar 

  10. Polchinski, J. String Theory (Cambridge Univ. Press, Cambridge, 1998).

    MATH  Google Scholar 

  11. Ashtekar, A. Quantum mechanics of geometry. Preprint gr-qc/9901023 at 〈xxx.lanl.gov〉 (1999).

  12. Gaul, M. & Rovelli, C. Loop quantum gravity and the meaning of diffeomorphism invariance. Lect. Notes Phys. 541, 277–324 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  13. Smolin, L. The new universe around the next corner. Phys. World 12, 79–84 (1999).

    Article  ADS  Google Scholar 

  14. Ellis, J., Hagelin, J. S., Nanopoulos, D. V. & Srednicki, M. Search for violations of quantum mechanics. Nucl. Phys. B 241, 381–405 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  15. Kostelecky, V. A. & Potting, R. CPT, strings, and meson factories. Phys. Rev. D 51, 3923–3935 (1995).

    Article  ADS  CAS  Google Scholar 

  16. Huet, P. & Peskin, M. E. Violation of CPT and quantum mechanics in the K0 - 0 system. Nucl. Phys. B 434, 3–38 (1995).

    Article  ADS  Google Scholar 

  17. Ellis, J., Lopez, J., Mavromatos, N. E., Nanopoulos, D. & the CPLEAR Collaboration. Test of CPT symmetry and quantum mechanics with experimental data from CPLEAR. Phys. Lett. B 364, 239–245 (1995).

    Article  ADS  Google Scholar 

  18. Amelino-Camelia, G., Ellis, J., Mavromatos, N. E., Nanopoulos, D. & Sarkar, S. Tests of quantum gravity from observations of γ-ray bursts. Nature 393, 763–765 (1998).

    Article  ADS  CAS  Google Scholar 

  19. Saulson, P. R. Fundamentals of Interferometric Gravitational Wave Detectors (World Scientific, Singapore, 1994).

    Book  Google Scholar 

  20. Radeka, V. Low-noise techniques in detectors. Annu. Rev. Nucl. Part. Sci. 38, 217–277 (1988).

    Article  ADS  CAS  Google Scholar 

  21. Garay, L. J. Space-time foam as a quantum thermal bath. Phys. Rev. Lett. 80, 2508–2511 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Astone, P. et al. Upper limit for a gravitational-wave stochastic background with the EXPLORER and NAUTILUS resonant detectors. Phys. Lett. B 385, 421–424 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Maggiore, M. Gravitational wave experiments and early universe cosmology. Phys. Rep. 331, 283–367 (2000).

    Article  ADS  Google Scholar 

  24. Abramovici, A. et al. LIGO: The laser interferometer gravitational-wave observatory. Science 256, 325–333 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Caron, B. et al. The Virgo interferometer. Class. Quantum Grav. 14, 1461–1469 (1997).

    ADS  CAS  Google Scholar 

  26. Danzmann, K. LISA: Laser interferometer space antenna for gravitational wave measurements. Class. Quantum Grav. 13, A247–A250 (1996).

    Article  ADS  Google Scholar 

  27. 't Hooft, G. Quantum gravity as a dissipative deterministic system. Class. Quantum Grav. 16, 3263–3279 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  28. Amelino-Camelia, G. Space-time foam. Preprint gr-qc/0104005 at 〈http://xxx.lanl.gov/〉; (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Amelino-Camelia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amelino-Camelia, G. A phenomenological description of space-time noise in quantum gravity. Nature 410, 1065–1067 (2001). https://doi.org/10.1038/35074035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing