Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data

Abstract

Surface geophysical data that are related to the process of thermal convection in the Earth's mantle provide constraints on the rheological properties and density structure of the mantle. We show that these convection-related data imply the existence of a region of very high effective viscosity near 2,000 km depth. This inference is obtained using a viscous-flow model based on recent high-resolution seismic models of three-dimensional structure in the mantle. The high-viscosity layer near 2,000 km depth results in a re-organization of flow from short to long horizontal length scales, which agrees with seismic tomographic observations of very long wavelength structures in the deep mantle. The high-viscosity region also strongly suppresses flow-induced deformation and convective mixing in the deep mantle. Here we predict compositional and thermal heterogeneity in this region, using viscous-flow calculations based on the new viscosity profile, together with independent mineral physics data. These maps are consistent with the anti-correlation of anomalies in seismic shear and bulk sound velocity in the deep mantle. The maps also show that mega-plumes in the lower mantle below the central Pacific and Africa are, despite the presence of compositional heterogeneity, buoyant and actively upwelling structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 6: Lateral variations in iron content at 2,740 km depth.
Figure 1: Geodynamic inferences of density structure in Earth's mantle.
Figure 2: Depth-dependent effective viscosity of Earth's mantle.
Figure 3: Predicted convective flow in Earth's lower mantle.
Figure 4: Flow-induced deformation or ‘stretching’ in the mantle.
Figure 5: Compositional and thermal heterogeneity at 2,740 km depth.

Similar content being viewed by others

References

  1. Marsh, J. G. et al. The GEM-T2 gravitational model. J. Geophys. Res. 95, 22043–22071 (1990).

    ADS  Google Scholar 

  2. De Mets, C. R., Gordon, R. G., Argus, D. F. & Stein, S. Current plate motions. Geophys. J. Int. 101, 425–478 (1990).

    ADS  Google Scholar 

  3. Gwinn, C. R., Herring, T. A. & Shapiro, I. I. Geodesy by radio interferometry: studies of the forced nutations of the Earth. 2. Interpretation. J. Geophys. Res. 91, 4755–4765 (1986).

    ADS  Google Scholar 

  4. Mathews, P., Buffet, B. A. & Herring, T. A. What do nutations tell us about the Earth's interior? Eos Trans. AGU 80, (Fall Meeting suppl.) 19 (1999).

    Google Scholar 

  5. Forte, A. M. & Woodward, R. L. Global 3D mantle structure and vertical mass and heat transfer across the mantle from joint inversions of seismic and geodynamic data. J. Geophys. Res. 102, 17981–17994 (1997).

    ADS  Google Scholar 

  6. Mooney, W. D., Laske, G. & Masters, T. G. CRUST 5.1: A global crustal model at 5° × 5°. J. Geophys. Res. 103, 727–747 (1998).

    ADS  CAS  Google Scholar 

  7. Panasyuk, S. V. The effect of compressibility, phase transformations, and assumed density structure on mantle viscosity inferred from Earth's gravity field. PhD dissertation, Massachusetts Institute of Technology (1998).

  8. Forte, A. M. & Perry, H. K. C. Geodynamic evidence for a chemically depleted continental tectosphere. Science 290, 1940–1944 (2000).

    ADS  CAS  PubMed  Google Scholar 

  9. Woodward, R. L. et al. in Evolution of the Earth and Planets. Geophys. Monogr. Ser. (eds Takahashi, E., Jeanloz, R. & Rubie, D.) Vol. 74, 89–109 (AGU, Washington, DC, 1993).

    Google Scholar 

  10. Masters, T. G. et al. A shear-velocity model of the mantle. Phil. Trans. R. Soc. Lond. A 354, 1385–1411 (1996).

    ADS  Google Scholar 

  11. Li, X.-D. & Romanowicz, B. Global mantle shear-velocity model developed using nonlinear asymptotic coupling theory. J. Geophys. Res. 101, 22245–22272 (1996).

    ADS  Google Scholar 

  12. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    ADS  CAS  Google Scholar 

  13. Grand, S. P., van der Hilst, R. D. & Widiyantoro, S. Global seismic tomography: A snapshot of convection in the Earth. Geol. Soc. Am. Today 7, 1–7 (1997).

    Google Scholar 

  14. van der Hilst, R. D. & Kárason, H. Compositional heterogeneity in the bottom 1000 km of Earth's mantle: Towards a hybrid convection model. Science 283, 1885–1888 (1999).

    ADS  CAS  PubMed  Google Scholar 

  15. Tackley, P. J. in The Core-Mantle Boundary Region. Geodyn. Ser. (ed. Gurnis, M. et al.) Vol. 28, 231–253 (AGU, Washington, DC, 1998).

    Google Scholar 

  16. Kellogg, L. H., Hager, B. H. & van der Hilst, R. D. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    ADS  CAS  PubMed  Google Scholar 

  17. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).

    ADS  CAS  Google Scholar 

  18. Albarède, F. & van der Hilst, R. D. New mantle convection model may reconcile conflicting evidence. Eos Trans. AGU 80, 535–539 (1999).

    ADS  Google Scholar 

  19. Roberston, G. S. & Woodhouse, J. H. Constraints on lower mantle physical properties from seismology and mineral physics. Earth Planet. Sci. Lett. 143, 197–205 (1996).

    ADS  Google Scholar 

  20. Su, W. & Dziewonski, A. M. Simultaneous inversion for 3-D variations in shear and bulk velocity in the mantle. Phys. Earth Planet. Inter. 100, 135–156 (1997).

    ADS  Google Scholar 

  21. Kennett, B. L. N., Widiyantoro, S. & van der Hilst, R. D. Joint seismic tomography for bulk-sound and shear wavespeed in the Earth's mantle. J. Geophys. Res. 103, 12469–12493 (1998).

    ADS  Google Scholar 

  22. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. M. in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale. Geophys. Monogr. Ser. (eds Karato, S.-I. et al.) Vol. 117, 63–87 (AGU, Washington, DC, 2000).

    Google Scholar 

  23. Ishii, M. & Tromp, J. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth's mantle. Science 285, 1231–1236 (1999).

    CAS  PubMed  Google Scholar 

  24. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS  Google Scholar 

  25. Sinelnikov, Y. D., Chen, G. & Liebermann, R. C. Elasticity of CaTiO3-CaSiO3 perovskites. Phys. Chem. Mineral. 25, 515–521 (1998).

    ADS  CAS  Google Scholar 

  26. Zhang, J. & Weidner, D. J. Thermal equation of state of aluminum-enriched silicate perovskite. Science 284, 782–784 (1999).

    ADS  CAS  PubMed  Google Scholar 

  27. McDonough, W. F. & Sun, S.-S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    ADS  CAS  Google Scholar 

  28. Ekström, G. & Dziewonski, A. M. The unique anisotropy of the Pacific upper mantle. Nature 394, 168–172 (1998).

    ADS  Google Scholar 

  29. Karato, S. Importance of anelasticity in the interpretation of seismic tomography. Geophys. Res. Lett. 20, 1623–1626 (1993).

    ADS  Google Scholar 

  30. Forte, A. M. & Peltier, W. R. The kinematics and dynamics of poloidal-toroidal coupling in mantle flow: The importance of surface plates and lateral viscosity variations. Adv. Geophys. 36, 1–119 (1994).

    ADS  Google Scholar 

  31. Karato, S.-I. & Li, P. Diffusion creep in perovskite: Implications for the rheology of the lower mantle. Science 255, 1238–1240 (1992).

    ADS  CAS  PubMed  Google Scholar 

  32. Constable, S. C., Parker, R. L. & Constable, C. G. Occam's inversion: A practical algorithm for generating smooth models from electromagnetic sounding data. Geophysics 52, 289–300 (1987).

    ADS  Google Scholar 

  33. King, S. & Masters, T. G. An inversion for the radial viscosity structure using seismic tomography. Geophys. Res. Lett. 19, 1551–1554 (1992).

    ADS  Google Scholar 

  34. Mitrovica, J. X. & Forte, A. M. The radial profile of mantle viscosity: Results from the joint inversion of convection and post-glacial rebound observables. J. Geophys. Res. 102, 2751–2769 (1997).

    ADS  Google Scholar 

  35. Forte, A. M. in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale. Geophys. Monogr. Ser. (eds Karato, S.-I. et al.) Vol. 117, 3–36 (AGU, Washington, DC, 2000).

    Google Scholar 

  36. Durek, J. & Ekström, G. A radial model of anelasticity consistent with long-period surface-wave attenuation. Bull. Seismol. Soc. Am. 86, 144–158 (1996).

    Google Scholar 

  37. Karato, S.-I. A dislocation model of seismic wave attenuation and micro-creep in the Earth. Pure Appl. Geophys. 153, 239–256 (1998).

    ADS  Google Scholar 

  38. Hofmann, A. W. The gabbro-harzburgite connection in OIB sources. Eos Trans. AGU 80 (Fall Meeting suppl.) 1182–1183 (1999).

    Google Scholar 

  39. Ottino, J. M. The Kinematics of Mixing: Stretching, Chaos, and Transport Ch. 2 & 4 (Cambridge Univ. Press, Cambridge, 1989).

    MATH  Google Scholar 

  40. Kellogg, J. B. & O'Connell, R. J. The effects of toroidal motion and layered viscosity on mixing in three dimensions. Eos Trans. AGU 80 (Fall Meeting suppl.) 949 (1999).

    Google Scholar 

  41. Hager, B. H. Subducted slabs and the geoid: Constraints on mantle rheology and flow. J. Geophys. Res. 89, 6003–6015 (1984).

    ADS  Google Scholar 

  42. Forte, A. M. & Peltier, W. R. Plate tectonics and aspherical Earth structure: The importance of poloidal-toroidal coupling. J. Geophys. Res. 92, 3645–3679 (1987).

    ADS  Google Scholar 

  43. Ricard, Y. & Vigny, C. Mantle dynamics with induced plate tectonics. J. Geophys. Res. 94, 17543–17559 (1989).

    ADS  Google Scholar 

  44. Gurnis, M. & Davies, G. F. The effect of depth-dependent viscosity on convective mixing of the mantle and the possible survival of primitive mantle. Geophys. Res. Lett. 13, 541–544 (1986).

    ADS  Google Scholar 

  45. Manga, M. Mixing of heterogeneities in the mantle—Effects of viscosity differences. Geophys. Res. Lett. 23, 403–406 (1996).

    ADS  Google Scholar 

  46. van Keken, P. & Ballentine, C. J. Whole-mantle versus layered mantle convection and the role of a high-viscosity lower mantle in terrestrial volatile evolution. Earth Planet. Sci. Lett. 156, 19–32 (1998).

    ADS  CAS  Google Scholar 

  47. Bunge, H.-P. & Richards, M. A. The origin of large-scale structure in mantle convection: Effects of plate motions and viscosity stratification. Geophys. Res. Lett. 23, 2987–2990 (1996).

    ADS  Google Scholar 

  48. Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Complex shear velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928 (1999).

    CAS  PubMed  Google Scholar 

  49. Gurnis, M., Mitrovica, J. X., Ritsema, J. & van Heijst, H. J. Constraining mantle density structure using geological evidence of surface uplift rates: The case of the African superplume. Geochem. Geophys. Geosystems. [online] 1 (2000).

  50. Jackson, I. Elasticity, composition and temperature of the Earth's lower mantle: A reappraisal. Geophys. J. Int. 134, 291–311 (1998).

    ADS  Google Scholar 

  51. Stacey, F. D. Thermoelasticity of a mineral composite and a reconsideration of lower mantle properties. Phys. Earth Planet. Inter. 106, 219–236 (1998).

    ADS  Google Scholar 

  52. Jackson, I., Paterson, M. S. & Fitzgerald, J. D. Seismic wave attenuation in Åheim dunite: An experimental study. Geophys. J. Int. 108, 517–534 (1992).

    ADS  Google Scholar 

  53. Zerr, A., Diegler, A. & Boehler, R. Solidus of Earth's deep mantle. Science 281, 243–246 (1998).

    ADS  CAS  PubMed  Google Scholar 

  54. Stacey, F. D. Theory of thermal and elastic properties of the lower mantle and core. Phys. Earth Planet. Inter. 89, 219–245 (1995).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank I. Jackson for a review, for suggestions used in the Methods section, and for the detailed check of the derivatives in Table 1. A.M.F. also thanks A. Davaille for many helpful discussions. We acknowledge support from NSERC, the Canada Foundation for Innovation, the Ontario Innovation Trust, and the Canadian Institute for Advanced Research—Earth Systems Evolution Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro M. Forte.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forte, A., Mitrovica, J. Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410, 1049–1056 (2001). https://doi.org/10.1038/35074000

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35074000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing