Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Crystal structure of a hairpin ribozyme–inhibitor complex with implications for catalysis

Abstract

The hairpin ribozyme catalyses sequence-specific cleavage of RNA. The active site of this natural RNA results from the docking of two irregular helices: stems A and B. One strand of stem A harbours the scissile bond. The 2.4 Å resolution structure of a hairpin ribozyme–inhibitor complex reveals that the ribozyme aligns the 2′-OH nucleophile and the 5′-oxo leaving group by twisting apart the nucleotides that flank the scissile phosphate. The base of the nucleotide preceding the cleavage site is stacked within stem A; the next nucleotide, a conserved guanine, is extruded from stem A and accommodated by a highly complementary pocket in the minor groove of stem B. Metal ions are absent from the active site. The bases of four conserved purines are positioned potentially to serve as acid-base catalysts. This is the first structure determination of a fully assembled ribozyme active site that catalyses a phosphodiester cleavage without recourse to metal ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sequence and reactions catalysed by the hairpin ribozyme.
Figure 2: Architecture of the hairpin ribozyme.
Figure 3: Structure of stem A.
Figure 4: Structure of Stem B.
Figure 5: Active site architecture.

Similar content being viewed by others

References

  1. Fedor, M. J. Structure and function of the hairpin ribozyme. J. Mol. Biol. 297, 269–291 (2000).

    CAS  PubMed  Google Scholar 

  2. McKay, D. B. & Wedekind, J. E. in The RNA World (eds Gesteland, R. F., Cech, T. R. & Atkins, J. F.) 265–286 (Cold Spring Harbor Press, Cold Spring Harbor, 1999).

    Google Scholar 

  3. Butcher, S. E., Heckman, J. E. & Burke, J. M. Reconstitution of hairpin ribozyme activity following separation of functional domains. J. Biol. Chem. 270, 29648–29651 (1995).

    CAS  PubMed  Google Scholar 

  4. Shin, C. et al. The loop B domain is physically separable from the loop A domain in the hairpin ribozyme. Nucleic Acids Res. 24, 2685–2689 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Murchie, A. I. H., Thomson, J. B., Walter, F. & Lilley, D. M. J. Folding of the hairpin ribozyme in its natural conformation achieves close physical proximity of the loops. Mol. Cell 1, 873–881 (1998).

    CAS  PubMed  Google Scholar 

  6. Walter, N. G., Burke, J. M. & Millar, D. P. Stability of hairpin ribozyme tertiary structure is governed by the interdomain junction. Nature Struct. Biol. 6, 544–549 (1999).

    CAS  PubMed  Google Scholar 

  7. Walter, F., Murchie, A. I. H., Thomson, J. B. & Lilley, D. M. J. Structure and activity of the hairpin ribozyme in its natural junction conformation: effect of metal ions. Biochemistry 37, 14195–14203 (1998).

    CAS  PubMed  Google Scholar 

  8. Hampel, A. & Cowan, J. A. A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem. Biol. 4, 513–517 (1997).

    CAS  PubMed  Google Scholar 

  9. Nesbitt, S., Hegg, L. A. & Fedor, M. J. An unusual pH-independent and metal-ion independent mechanism for hairpin ribozyme catalysis. Chem. Biol. 4, 619–630 (1997).

    CAS  PubMed  Google Scholar 

  10. Young, K. J., Gill, F. & Grasby, J. A. Metal ions play a passive role in the hairpin ribozyme catalyzed reaction. Nucleic Acids Res. 25, 3760–3766 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Cowan, J. A. Metallobiochemistry of RNA. Co(NH3)3+6 as a probe for Mg2+ (aq) binding sites. J. Inorg. Biochem. 49, 171–175 (1993).

    CAS  PubMed  Google Scholar 

  12. Ferré-D'Amaré, A. R., Zhou, K. & Doudna, J. A. Crystal structure of a hepatitis delta virus ribozyme. Nature 395, 567–574 (1998).

    ADS  PubMed  Google Scholar 

  13. Perrotta, A. T., Shih, I. & Been, M. D. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science 286, 123–126 (1999).

    CAS  PubMed  Google Scholar 

  14. Nakano, S. -I., Chadalavada, D. M. & Bevilacqua, P. C. General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287, 1493–1497 (2000).

    ADS  CAS  PubMed  Google Scholar 

  15. Muth, G. W., Ortoleva-Donnelly, L. & Strobel, S. A. A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. Science 289, 947–950 (2000).

    ADS  CAS  PubMed  Google Scholar 

  16. Chowrira, B. M. & Burke, J. M. Binding and cleavage of nucleic acids by the “hairpin” ribozyme. Biochemistry 30, 8515–8522 (1991).

    Google Scholar 

  17. Walter, N. G., Hampel, K. J., Brown, K. M. & Burke, J. M. Tertiary structure formation in the hairpin ribozyme monitored by fluorescence resonance energy transfer. EMBO J. 17, 2378–2391 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nowakowski, J., Shim, P. J., Prasad, G. S., Stout, C. D. & Joyce, G. F. Crystal structure of an 82-nucleotide RNA-DNA complex formed by the 10-23 DNA enzyme. Nature Struct. Biol. 6, 151–156 (1999).

    CAS  PubMed  Google Scholar 

  19. Walter, F., Murchie, A. I. H. & Lilley, D. M. J. Folding of the four-way RNA junction of the hairpin ribozyme. Biochemistry 37, 17629–17636 (1998).

    CAS  PubMed  Google Scholar 

  20. Hampel, K. J., Walter, N. G. & Burke, J. M. The solvent-protected core of the hairpin ribozyme-substrate complex. Biochemistry 37, 14672–14682 (1998).

    CAS  PubMed  Google Scholar 

  21. Earnshaw, D. J. et al. Inter-domain cross-linking and molecular modeling of the hairpin ribozyme. J. Mol. Biol. 274, 197–212 (1997).

    CAS  PubMed  Google Scholar 

  22. Cai, Z. & Tinoco, I. J. Solution structure of loop A from the hairpin ribozyme from tobacco ringspot virus satellite. Biochemistry 35, 6026–6036 (1996).

    CAS  PubMed  Google Scholar 

  23. Butcher, S. E., Allain, F. H. -T. & Feigon, J. Solution structure of the loop B domain from the hairpin ribozyme. Nature Struct. Biol. 6, 212–216 (1999).

    CAS  PubMed  Google Scholar 

  24. Chowrira, B. M., Berzal-Herranz, A. & Burke, J. M. Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354, 320–322 (1991).

    ADS  CAS  PubMed  Google Scholar 

  25. Moore, P. B. Structural motifs in RNA. Annu. Rev. Biochem. 68, 287–300 (1999).

    CAS  PubMed  Google Scholar 

  26. Butcher, S. E. & Burke, J. M. A photo-cross-linkable tertiary structure motif found in functionally distinct RNA molecules is essential for catalytic function of the hairpin ribozyme. Biochemistry 33, 992–999 (1994).

    CAS  PubMed  Google Scholar 

  27. Ferré-D'Amaré, A. R. & Doudna, J. A. Crystallization and structure determination of a hepatitis delta virus ribozyme: use of the RNA-binding protein U1A as a crystallization module. J. Mol. Biol. 295, 541–556 (2000).

    PubMed  Google Scholar 

  28. Schmidt, S. et al. Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res. 24, 573–581 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Walter, N. G., Yang, N. & Burke, J. M. Probing non-selective cation binding in the hairpin ribozyme with Tb(III). J. Mol. Biol. 298, 539–555 (2000).

    CAS  PubMed  Google Scholar 

  30. Butcher, S. E., Allain, F. H. -T. & Feigon, J. Determination of metal ion binding sites within the hairpin ribozyme domains by NMR. Biochemistry 39, 2174–2184 (2000).

    CAS  PubMed  Google Scholar 

  31. Wu, M. & Tinoco, I. RNA folding causes secondary structure rearrangement. Proc. Natl Acad. Sci. USA 95, 11555–11560 (1998).

    ADS  CAS  PubMed  Google Scholar 

  32. Chowrira, B., Berzal-Herranz, A., Keller, C. F. & Burke, J. M. Four ribose 2′-hydroxyl groups essential for catalytic function of the hairpin ribozyme. J. Biol. Chem. 268, 19458–19462 (1993).

    CAS  PubMed  Google Scholar 

  33. Ryder, S. P. & Strobel, S. A. Nucleotide analog interference mapping of the hairpin ribozyme: implications for secondary and tertiary structure formation. J. Mol. Biol. 291, 295–311 (1999).

    CAS  PubMed  Google Scholar 

  34. Young, K. J. et al. The role of essential pyrimidines in the hairpin ribozyme-catalysed reaction. J. Mol. Biol. 288, 853–866 (1999).

    CAS  PubMed  Google Scholar 

  35. Pinard, R. et al. Structural basis for the guanosine requirement of the hairpin ribozyme. Biochemistry 38, 16035–16039 (1999).

    CAS  PubMed  Google Scholar 

  36. Siwkowski, A., Shippy, R. & Hampel, A. Analysis of hairpin ribozyme base mutations in loops 2 and 4 and their effects on cis-cleavage in vitro. Biochemistry 36, 3930–3940 (1997).

    CAS  PubMed  Google Scholar 

  37. Shippy, R., Siwkowski, A. & Hampel, A. Mutational analysis of loops 1 and 5 of the hairpin ribozyme. Biochemistry 37, 564–570 (1998).

    CAS  PubMed  Google Scholar 

  38. Grasby, J. A., Mersmann, K., Singh, M. & Gait, M. J. Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA. Biochemistry 34, 4068–4076 (1995).

    CAS  PubMed  Google Scholar 

  39. van Tol, H., Buzayan, J. M., Feldstein, P. A., Eckstein, F. & Bruening, G. Two autolytic processing reactions of a satellite RNA proceed with inversion of configuration. Nucleic Acids Res. 18, 1971–1975 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Richards, F. M. et al. Protein structure, ribonuclease-S, and nucleotide interactions. Cold Spring Harbor Symp. Quant. Biol. 36, 35–43 (1971).

    CAS  Google Scholar 

  41. Findlay, D., Herries, D. G., Mathias, A. P., Rabin, B. R. & Ross, C. A. The active site and mechanism of action of bovine pancreatic ribonuclease 7. The catalytic mechanism. Biochem. J. 85, 152–153 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Roberts, G. C. K., Dennis, E. A., Meadows, D. H., Cohen, J. S. & Jardetzky, O. The mechanism of action of ribonuclease. Proc. Natl Acad. Sci. USA 62, 1151 (1969).

    ADS  CAS  PubMed  Google Scholar 

  43. Kleywegt, G. J. & Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. D 50, 175–177 (1994).

    Google Scholar 

  44. Fedor, M. J. Tertiary structure stabilization promotes hairpin ribozyme ligation. Biochemistry 38, 11040–11050 (1999).

    CAS  PubMed  Google Scholar 

  45. Saenger, W. Principles of Nucleic Acid Structure (Springer, New York, 1984).

    Google Scholar 

  46. Ferré-D'Amaré, A. R. & Doudna, J. A. Use of cis- and trans-ribozymes to remove 5′ and 3′ heterogeneities from milligrams of in vitro transcribed RNA. Nucleic Acids Res. 24, 977–978 (1996).

    PubMed  PubMed Central  Google Scholar 

  47. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  PubMed  Google Scholar 

  48. Brünger, A. T. et al. Crystallography and NMR system: a new software system for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    PubMed  Google Scholar 

  49. Jones, T. A., Zou, J. Y., Cowan, S. W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    PubMed  Google Scholar 

  50. Carson, M. Ribbons. Methods Enzymol. 277, 493–505 (1997).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Earnest, L. Hung and G. McDermott for help at ALS beamline 5.0.2; C. Hoang for biochemical support; J. Bolduc, P. Heath and B. Shen for computational and crystallographic support; K. Nagai for U1A plasmids; and S. Biggins, M. Holmes, P. Li, M. Rosenberg, S. Ryder, S. Sigurdsson, B. Stoddard, S. Strobel, R. Strong, G. Varani, D. Wilson and K. Zhang for discussions. This work was supported by institutional funds from the Fred Hutchinson Cancer Research Center (FHCRC). Access to ALS beamline 5.0.2 as part of the principal research consortium was made possible by general support from the FHCRC. P.B.R. is a post-doctoral trainee of the Chromosome Metabolism and Cancer training grant from the National Cancer Institute to the FHCRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian R. Ferré-D'Amaré.

Supplementary information

Figure 1.

Single turnover cleavage assay. End-labeled substrate RNA (200 nM) was incubated with ribozyme (1 m M) in reaction buffer (1 mM MgCl2, and 50 mM Tris pH 7.5) at 25°C for the times indicated. Reactions were resolved on a 20% polyacrylamide, 8M urea gel. The substrate RNA has the same sequence as the inhibitor strand used in the crystals but is all-ribose. It was incubated with either a wild-type four-helix junction ribozyme, or the crystallization construct with and without U1A-RBD. Reactions do not go to completion because the ribozymes also catalyze ligation.

Figure 2.

Stereoview of a portion of the 2.4 쎅 resolution ‘solvent-flattened’ experimental electron density map represented as blue and red mesh. The contour levels are one and three s.d. above the mean peak height, respectively. Superimposed on the density is the refined model of the active site oriented as in Fig. 5d.

Figure 3.

Stereoview of a portion of the sA-weighted simulated-annealing omit 2|Fo| -|Fc| electron density map. The contour levels, colors, and superimposed model are the same as in the previous figure.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rupert, P., Ferré-D'Amaré, A. Crystal structure of a hairpin ribozyme–inhibitor complex with implications for catalysis. Nature 410, 780–786 (2001). https://doi.org/10.1038/35071009

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071009

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing