Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chemical speciation drives hydrothermal vent ecology

Abstract

The physiology and biochemistry of many taxa inhabiting deep-sea hydrothermal vents have been elucidated1,2,3,4; however, the physicochemical factors controlling the distribution of these organisms at a given vent site remain an enigma after 20 years of research5,6,7,8,9,10,11. The chemical speciation of particular elements has been suggested as key to controlling biological community structure in these extreme aquatic environments7,11,12. Implementation of electrochemical technology13,14 has allowed us to make in situ measurements of chemical speciation at vents located at the East Pacific Rise (9° 50′ N) and on a scale relevant to the biology. Here we report that significant differences in oxygen, iron and sulphur speciation strongly correlate with the distribution of specific taxa in different microhabitats. In higher temperature (> 30 °C) microhabitats, the appreciable formation of soluble iron-sulphide molecular clusters markedly reduces the availability of free H2S/HS- to vent (micro)organisms, thus controlling the available habitat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Representative in situ voltammetry data.
Figure 2: Histogram of free H2S/HS- and AVS data from discrete samples.
Figure 3: Fe/AVS versus pH/temperature plots from discrete samples.

Similar content being viewed by others

References

  1. Cavanaugh, C. et al. Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila: Possible chemoautrophic symbionts. Science 213, 340–342 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Felbeck, H. Chemoautrophic potential of the hydrothrmal vent tube worm Riftia pachyptila Jones (Vestimentifera). Science 213, 336–338 (1981).

    Article  ADS  CAS  Google Scholar 

  3. Childess, J. J. & Mickel, T. J. Oxygen and sulfide consumption rates of the clam Calyptogena pacifica. Mar. Biol. Lett. 3, 73 (1982).

    Google Scholar 

  4. Goffredi, S. K., Childress, J. J., Desauliniers, N. T. & Lallier, F. H. Sulfide acquisition by the vent worm Riftia pachyptila appears to be via uptake of HS-, rather than H2S. J. Exp. Biol. 200, 2609–2616 (1997).

    CAS  PubMed  Google Scholar 

  5. Desbruyeres, D. et al. Biology and ecology of the ‘pompeii worm’ (Alvinella pompejana Desbruyeres and Laubier) a normal dweller of an extreme deep-sea environment: a synthesis of current knowledge and recent developments. Deep-Sea Res. II 45, 383–422 (1998).

    Article  ADS  CAS  Google Scholar 

  6. Sarradin, P. M. et al. Chemical and thermal description of the environment of the genesis hydrothermal vent community (13° N, EPR). Cah. Biol. Mar. 39, 159–167 (1998).

    Google Scholar 

  7. Shank, T. M. et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9o50′N, East Pacific Rise). Deep-Sea Res. II 45, 465–515 (1998).

    Article  ADS  Google Scholar 

  8. Cary, S. C., Shank, T. & Stein, J. Worms bask in extreme temperatures. Nature 391, 545–546 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Chevaldonné, P., Desbruyères, D. & Childress, J. J. Some like it hot and some even hotter. Nature 359, 593–594 (1992).

    Article  ADS  Google Scholar 

  10. Juniper, S. K. & Martineu, P. Alvenillids and sulfides at hydrothermal vents of the eastern Pacific: a review. Am. Zool. 35, 74–185 (1995).

    Article  Google Scholar 

  11. Johnson, K. S., Beehler, C. L., Sakamoto-Arnold, C. M. & Childress, J. J. In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 231, 1139–1141 (1986).

    Article  ADS  CAS  Google Scholar 

  12. Von Damm, K. L. in Seafloor Hydrothermal Systems (eds Humphris, S. E., Zierenberg, R. A., Mullineaux, L. S. & Thomson, R. E.) 222–247 (American Geophysical Union, Washington DC, 1995).

    Google Scholar 

  13. Brendel, P. J. & Luther, G. W. III Development of a gold amalgam voltammetric microelectrode for the determination of dissolved Fe, Mn, O2 and S(-II) in porewaters of marine and freshwater sediments. Environ. Sci. Technol. 29, 751–761 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Luther, G. W. III, Reimers, C. E., Nuzzio, D. B & Lovalvo, D. In situ deployment of voltammetric, potentiometric and amperometric microelectrodes from a ROV to determine O2, Mn, Fe, S(-2) and pH in porewaters. Environ. Sci. Technol. 33, 4352–4356 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Cline, J. E. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969).

    Article  ADS  CAS  Google Scholar 

  16. Rickard, D. T. & Luther, G. W. III Kinetics of pyrite formation by the H2S oxidation of iron(ii) monosulfide in aqueous solutions between 25 °C and 125 °C: the mechanism. Geochim. Cosmochim. Acta 61, 135–147 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Theberge, S. M. & Luther, G. W. III Determination of the electrochemical properties of a soluble aqueous FeS cluster present in sulfidic systems. Aq. Geochem. 3, 191–211 (1997).

    Article  CAS  Google Scholar 

  18. Rozan, T. F., Theberge, S. M. & Luther, G. W. III Quantifying elemental sulfur (S0), bisulfide (HS-) and polysulfides (S2-x) using a voltammetric method. Anal. Chim. Acta 415, 175–184 (2000).

    Article  CAS  Google Scholar 

  19. Cary, S. C., Cottrell, M. T., Stein, J. L., Camacho, F. & Desbruyères, D. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63, 1124–1130 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Di Meo, C. A., Wakefield, J. R. & Cary, S. C. A new device for sampling small volumes of water from marine micro-environments. Deep-Sea Res. I 46, 1279–1287 (1999).

    Article  CAS  Google Scholar 

  21. Rickard, D. T. Kinetics of pyrite formation by the H2S oxidation of iron(ii) monosulfide in aqueous solutions between 25 °C and 125 °C: the rate equation. Geochim. Cosmochim. Acta 61, 115–134 (1997).

    Article  ADS  CAS  Google Scholar 

  22. Millero, F. J., Plese, T. & Fernandez, M. The dissociation of hydrogen sulfide in seawater. Limnol. Oceanogr. 33, 269–274 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Luther, G. W. III, Ferdelman, T. G., Kostka, J. E., Tsamakis, E. J. & Church, T. M. Temporal and spatial variability of reduced sulfur species (FeS2, S2O2-3) and porewater parameters in salt marsh sediments. Biogeochemistry 14, 57–88 (1991).

    Article  CAS  Google Scholar 

  24. Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 41, 779–782 (1970).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. L. Reysenbach, K. Longnecker, the DSV Alvin pilots (P. Hickey, S. Faluotico and B. Williams), and the crew and Captain of the R/V Atlantis for their help and encouragement. This work was funded by grants from the National Science Foundation and the National Aeronautics and Space Administration, and by the University of Delaware Sea Grant Program through the National Oceanic and Atmospheric Administration, and the Devonshire Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George W. Luther III.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luther, G., Rozan, T., Taillefert, M. et al. Chemical speciation drives hydrothermal vent ecology. Nature 410, 813–816 (2001). https://doi.org/10.1038/35071069

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071069

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing