Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of chaotic resonances in the Solar System

Abstract

Our understanding of the Solar System has been revolutionized over the past decade by the finding that the orbits of the planets are inherently chaotic. In extreme cases, chaotic motions can change the relative positions of the planets around stars, and even eject a planet from a system. Moreover, the spin axis of a planet—Earth's spin axis regulates our seasons—may evolve chaotically, with adverse effects on the climates of otherwise biologically interesting planets. Some of the recently discovered extrasolar planetary systems contain multiple planets, and it is likely that some of these are chaotic as well.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A rigid pendulum, with angle θ measured from the vertical.
Figure 2: The motion of a rigid pendulum traces closed curves on the phase diagram, showing the angle of pendulum, θ, versus its angular momentum, p = ml θ̇.
Figure 6: The location of asteroids in the outer asteroid belt in the (eccentricity, semimajor axis) plane.
Figure 3: The histogram of asteroids as a function of semimajor axis a.
Figure 4: The orbital eccentricity of an object placed in the 3:1 resonance (at 2.5 AU) plotted as a function of time.
Figure 5: The distance between two initially nearly identical initial conditions for two interacting nonlinear oscillators.

Similar content being viewed by others

References

  1. Giffen, R. A study of commensurable motion in the asteroid belt. Astron. Astrophys 23, 387–403 (1973).

    ADS  Google Scholar 

  2. Wisdom, J. The origin of the Kirkwood gaps: a mapping for asteroidal motion near the 3/1 commensurability. Astron. J. 87, 577–593 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  3. Wisdom, J. Chaotic behavior and the origin of the 3/1 Kirkwood gap. Icarus 56, 51–74 (1983).

    Article  ADS  Google Scholar 

  4. Wisdom, J. A perturbative treatment of motion near the 3/1 commensurability. Icarus 63, 272–289 (1985).

    Article  ADS  Google Scholar 

  5. Wisdom, J. Meteorites may follow a chaotic route to earth. Nature 315, 731–733 (1985).

    Article  ADS  Google Scholar 

  6. Holman, M. & Murray, N. Chaos in high-order mean motion resonances in the outer asteroid belt. Astron. J. 112, 1278–1293 (1996).

    Article  ADS  Google Scholar 

  7. Malhotra, R., Duncan, M. J. & Levison, H. F. in Protostars and Planets IV (eds Mannings, V., Boss, A. P. & Russell, S. S.) 1231 (Univ. Arizona Press, Tucson, 2000).

    Google Scholar 

  8. Wisdom, J., Peale, S. J. & Mignard, F. The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984).

    Article  ADS  Google Scholar 

  9. Ward, W. R. & Rudy, D. J. Resonant obliquity of Mars? Icarus 94, 160–164 (1991).

    Article  ADS  Google Scholar 

  10. Touma, J. & Wisdom, J. The chaotic obliquity of Mars. Science 259, 1294–1297 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993).

    Article  ADS  Google Scholar 

  12. Ward, W. R. Comments on the long-term stability of the earth's obliquity. Icarus 50, 444–448 (1982).

    Article  ADS  Google Scholar 

  13. Laskar, J., Joutel, F. & Robutel, P. Stabilization of the earth's obliquity by the moon. Nature 361, 615–617 (1993).

    Article  ADS  Google Scholar 

  14. Neron de Surgy, O. & Laskar, J. On the long term evolution of the spin of the Earth. Astron. Astrophys. 318, 975–989 (1997).

    ADS  Google Scholar 

  15. Sussman, G. J. & Wisdom, J. Chaotic evolution of the solar system. Science 257, 56–62 (1992).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Murray, N. & Holman, M. The origin of chaos in the outer solar system. Science 283, 1877–1881 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Laskar, J. A numerical experiment on the chaotic behaviour of the solar system. Nature 338, 237–238 (1989).

    Article  ADS  Google Scholar 

  18. Chirikov, B. V. Resonance processes in magnetic traps. Plasma Phys. 1, 253–260 (1960).

    ADS  Google Scholar 

  19. Hénon, M. & Heiles, C. The applicability of the third integral of motion: Some numerical experiments. Astron. J. 69, 73–79 (1964).

    Article  ADS  MathSciNet  Google Scholar 

  20. Kirkwood, D. Meteoric Astronomy: A Treatise on Shooting-stars, Fireballs, and Aerolites 105–111 (Lippincott, Philadelphia, 1867).

    Google Scholar 

  21. Kolmogorov, A. N. On conservation of conditionally periodic motions under small perturbations of the Hamiltonian. Dokl. Akad. Nauk 98, 527–530 (1953).

    Google Scholar 

  22. Arnold, V. I. Proof of A. N. Kolmogorov's theorem on the preservation of quasi-periodic motions under small perturbations of the Hamiltonian. Uspethi Mat. Nauk. 18, 13–40 (1963); English translation Russian Math. Surv. 18, 9–36 (1963).

    Google Scholar 

  23. Moser, J. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Gottingen Math. Phys. K 1, 87–120 (1962).

    MATH  Google Scholar 

  24. Froeschle, C. & Scholl, H. The stochasticity of peculiar orbits in the 2/1 Kirkwood gap. Astron. Astrophys. 93, 62–66 (1981).

    ADS  MathSciNet  Google Scholar 

  25. Peirce, B. Development of the perturbative function of planetary motion. Astron. J. 1, 1–8 (1849).

    Article  ADS  Google Scholar 

  26. Goldreich, P. in Cosmology and Astrophysics (eds Terzian, Y. & Bilson, E. M.) 121–129 (Cornell Univ. Press, Ithaca, 1982).

    Google Scholar 

  27. Lichtenberg, A. J. & Lieberman, M. A. Regular and Chaotic Dynamics 245–264 (Springer, New York, 1992).

    MATH  Google Scholar 

  28. Chirikov, B. V. A universal instability of many-dimensional oscillator systems. Phys. Rep. 52, 263–379 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  29. Murray, N. & Holman, M. Diffusive chaos in the outer asteroid belt. Astron. J. 114, 1246–1259 (1997).

    Article  ADS  Google Scholar 

  30. Wisdom, J. The resonance overlap criterion and the onset of stochastic behavior in the restricted three-body. Astron. J. 85, 1122–1133 (1980).

    Article  ADS  Google Scholar 

  31. Wetherill, G. W. Where do the Apollo objects come from? Icarus 76, 1–18 (1988).

    Article  ADS  Google Scholar 

  32. Morbidelli, A. & Gladman, B. Orbital and temporal distributions of meteorites originating in the asteroid belt. Meteor. Planet. Sci. 33, 999–1016 (1998).

    Article  ADS  CAS  Google Scholar 

  33. Marti, K. & Graf. Cosmic-ray exposure history of ordinary chondrites. Annu. Rev. Earth Planet. Sci. 20, 221–243 (1992).

    Article  ADS  CAS  Google Scholar 

  34. Vokrouhlický, D. & Farinella, P. Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies. Nature 407, 606–608 (2000).

    Article  ADS  Google Scholar 

  35. Darwin, G. H. On the precession of a viscous spheroid and on the remote history of the Earth. Phil. Trans. R. Soc. Lond. 170, 447–538 (1879).

    Article  ADS  Google Scholar 

  36. Goldreich, P. Final spin states of planets and satellites. Astron. J. 71, 1–7 (1966).

    Article  ADS  Google Scholar 

  37. Ward, W. R. Large-scale variations in the obliquity of Mars. Science 181, 260–262 (1973).

    Article  ADS  CAS  Google Scholar 

  38. Murray, N., Holman, M. & Potter, M. On the origin of chaos in the asteroid belt. Astron. J. 116, 2583–2589 (1998).

    Article  ADS  Google Scholar 

  39. Nesvorny, D. & Morbidelli, A. Three-body mean motion resonances and the chaotic structure of the asteroid belt. Astron. J. 116, 3029–3037 (1998).

    Article  ADS  Google Scholar 

  40. Tisserand, F. Traité de Mecanique Celeste Tome IV (Gauthier-Villars, Paris, 1896).

    MATH  Google Scholar 

  41. Goldreich, P. & Nicholson, P. Revenge of tiny Miranda. Nature 269, 783–785 (1977).

    Article  ADS  Google Scholar 

  42. Aksnes, K. in Planetary Rings (ed. Brahic, A.) 479–487 (Proceedings of IAU Colloq. 75, Cepadues, Toulouse, 1984).

    Google Scholar 

  43. Morbidelli, A. & Nesvorny, D. Numerous weak resonances drive asteroids toward terrestrial planet's orbits. Icarus 139, 295–308 (1999).

    Article  ADS  Google Scholar 

  44. Laplace, P. S. Oeuvres Complete de Laplace Vol. 8, 144–145; (Imprimerie Royale, Paris, 1843–47); translation Gillispie, C. C., Fox, R. & Grattan-Guinness, I. Pierre-Simon Laplace (Princeton Univ. Press, 1997).

    Google Scholar 

  45. Sussman, G. J. & Wisdom, J. Numerical evidence that the motion of Pluto is chaotic. Science 241, 433–437 (1988).

    Article  ADS  CAS  Google Scholar 

  46. Laskar, J. The chaotic motion of the solar system—A numerical estimate of the size of the chaotic zones. Icarus 88, 266–291 (1990).

    Article  ADS  Google Scholar 

  47. Laskar, J. in Proc. IAU Symposium 152 (ed. Ferraz-Mello, S.) 1–16 (1990).

    Google Scholar 

  48. Butler, R. P. et al. Evidence for multiple companions to ν Andromedae. Astrophys. J. 526, 916–927 (1999).

    Article  ADS  Google Scholar 

  49. Laughlin, G. & Adams, F. C. Stability and chaos in the ν Andromedae planetary system. Astrophys. J. 526, 881–889 (1999).

    Article  ADS  Google Scholar 

  50. Rivera, E. J. & Lissauer, J. J. Stability analysis of the planetary system orbiting ν Andromedae. Astrophys. J. 530, 454–463 (2000).

    Article  ADS  Google Scholar 

  51. Tennyson, J. in Nonlinear Dynamics in Beam-Beam Interactions (eds Month, M. & Herrera, J. C.) 158–193 (AIP Conf. Proc 57, AIP, New York, 1979).

    Google Scholar 

  52. Ferraz-Mello, S. & Klafke, J. C. in Predictability, Stability, and Chaos in N-body Dynamical Systems (ed. Roy, A. E.) 177–184 (Plenum, New York, 1991).

    Book  Google Scholar 

  53. Gladman, B. J. et al. Dynamical lifetimes of objects injected into asteroid belt resonances. Science 277, 197–201 (1997).

    Article  ADS  CAS  Google Scholar 

  54. Henrard, J. & Lemaitre, A. A perturbation method for problems with two critical arguments. Celest. Mech. 39, 213–238 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  55. Morbidelli, A. & Moons, M. Secular resonances in mean motion commensurabilities: the 2:1 and 3:2 cases. Icarus 102, 316–332 (1993).

    Article  ADS  Google Scholar 

  56. Ferraz-Mello, S., Michtchenko, T. A. & Roig, F. The determinant role of Jupiter's great inequality in the depletion of the Hecuba gap. Astron. J. 116, 1491–1500 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank P. Goldreich for helpful conversations. This research was supported by NSERC of Canada and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Holman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, N., Holman, M. The role of chaotic resonances in the Solar System. Nature 410, 773–779 (2001). https://doi.org/10.1038/35071000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071000

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing