Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The motor side of depth vision

Abstract

To achieve stereoscopic vision, the brain must search for corresponding image features on the two retinas1. As long as the eyes stay still, corresponding features are confined to narrow bands called epipolar lines2,3. But when the eyes change position, the epipolar lines migrate on the retinas4,5,6. To find the matching features, the brain must either search different retinal bands depending on current eye position, or search retina-fixed zones that are large enough to cover all usual locations of the epipolar lines. Here we show, using a new type of stereogram in which the depth image vanishes at certain gaze elevations, that the search zones are retina-fixed. This being the case, motor control acquires a crucial function in depth vision: we show that the eyes twist about their lines of sight in a way that reduces the motion of the epipolar lines, allowing stereopsis to get by with smaller search zones and thereby lightening its computational load.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Epipolar lines vary with eye position.
Figure 2: Cyclorotated stereograms are visible only in certain eye positions.
Figure 3: Stereopsis depends on gaze elevation.
Figure 4: Perception thresholds depend on gaze elevation and cyclovergence.
Figure 5: Optimal stereoptic search zones when the eyes obey Listing's law (black areas) and when they move without cyclovergence (white areas) in a pattern called L2 (see Methods).

Similar content being viewed by others

References

  1. Julesz, B. Binocular depth perception of computer-generated patterns. Bell. Syst. Tech. J. 39, 1152–1162 (1960).

    Article  Google Scholar 

  2. Ogle, K. Researches in Binocular Vision (Saunders, Philadelphia, 1950).

    Google Scholar 

  3. Rogers, B. J. & Bradshaw, M. F. Does the visual system use the epipolar constraint for matching binocular images? Invest. Ophthalmol. Vis. Sci. 37 (Suppl.), 31–25 (1996).

    Google Scholar 

  4. Stevenson S. B. & Schor, C. M. Human stereo matching is not restricted to epipolar lines. Vision Res. 37, 2717–2723 (1997).

    Article  Google Scholar 

  5. Tweed, D. Visual-motor optimization in binocular control. Vision Res. 37, 1939–1951 (1997).

    Article  CAS  Google Scholar 

  6. Gårding, J., Porrill, J., Mayhew, J. E. W. & Frisby, J. P. Stereopsis, vertical disparity and relief transformations. Vision Res. 35, 703–722 (1995).

    Article  Google Scholar 

  7. Mok, D., Ro, A., Cadera, W., Crawford, J. D. & Vilis, T. Rotation of Listing's plane during vergence. Vision Res. 32, 2055–2064 (1992).

    Article  CAS  Google Scholar 

  8. Van Rijn, L. J. & Van den Berg, A. V. Binocular eye orientation during fixations: Listing's law extended to include eye vergence. Vision Res. 33, 691–708 (1993).

    Article  CAS  Google Scholar 

  9. Howard, I. P., Ohmi, M. & Sun, L. Cyclovergence: a comparison of objective and psychophysical measurements. Exp. Brain Res. 97, 349–355 (1993).

    Article  CAS  Google Scholar 

  10. Hooge, I. Th. C. & van den Berg, A. V. Visually evoked cyclovergence and extended Listing's law. J. Neurophysiol. 83, 2757–2775 (2000).

    Article  CAS  Google Scholar 

  11. Crone, R. A. & Everhard-Halm, Y. Optically induced eye torsion. Albrecht v. Graefes Arch. klin. exp. Ophthal. 195, 231–239 (1975).

    Article  CAS  Google Scholar 

  12. Hooten, K., Myers, E., Worrall, R. & Stark, L. Cyclovergence: The motor response to cyclodisparity. Albrecht v. Graefes Arch. klin. exp. Ophthal. 210, 65–68 (1979).

    Article  CAS  Google Scholar 

  13. Kertesz, A. E., Sullivan, M. J. The effect of stimulus size on human cyclofusional response. Vision Res. 18, 567–571 (1978).

    Article  CAS  Google Scholar 

  14. Carpenter, R. H. S. The Movements of the Eyes (Pion, London, 1988).

    Google Scholar 

  15. Helmholtz, H. von. Handbuch der Physiologischen Optik (Voss, Hamburg, 1867).

    MATH  Google Scholar 

  16. Minken A. W. H. & Van Gisbergen, J. A. M. A three-dimensional analysis of vergence movements at various levels of elevation. Exp. Brain Res. 101, 331–345 (1994).

    Article  Google Scholar 

  17. Allen, M. J. The dependence of cyclophoria on convergence, elevation and the system of axes. Am. J. Optom. 31, 297–307 (1954).

    Article  CAS  Google Scholar 

  18. Kapoula, Z., Bernotas, M. & Haslwanter, T. Listing's plane rotation with convergence: role of disparity, accommodation, and depth perception. Exp. Brain Res. 126, 175–186 (1999).

    Article  CAS  Google Scholar 

  19. Steffen, H., Walker, M. F. & Zee, D. S. Rotation of Listing's plane with convergence: independence from eye position. Invest. Ophthalmol. Vis. Sci. 41, 715–721 (2000).

    CAS  PubMed  Google Scholar 

  20. Hepp, K. On Listing's law. Commun. Math. Phys. 132, 285–292 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  21. Hepp, K. Theoretical explanations of Listing's law and their implication for binocular vision. Vision Res. 35, 3237–3241 (1995).

    Article  CAS  Google Scholar 

  22. Farell, B. Two-dimensional matches from one-dimensional stimulus components in human stereopsis. Nature 395, 689–693 (1998).

    Article  ADS  CAS  Google Scholar 

  23. Nielsen, K. R. & Poggio, T. Vertical image registration in stereopsis. Vision Res. 24, 1133–1140 (1984).

    Article  CAS  Google Scholar 

  24. Prazdny, K. Vertical disparity tolerance in random-dot stereograms. Bull. Psychonom. Soc. 23, 413–414 (1985).

    Article  Google Scholar 

  25. Robinson, D. A. A method of measuring eye movement using a scleral search coil in a magnetic field. IEEE Trans. Biomed. Eng. 10, 137–145 (1963).

    CAS  Google Scholar 

  26. Tweed, D., Cadera, W. & Vilis, T. Computing three-dimensional eye position quaternions and eye velocity from search coil signals. Vision Res. 30, 97–110 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Henriques, I. Howard, E. Klier, P. Nguyen, J. Sharpe, H. Wang, A. Wong and J. Zacher for help with experiments; and K. Beykirch, P. Hallett, C. Hawkins, D. Henriques, H. Misslisch, M. Niemeier and T. Vilis for comments on the manuscript. This study was supported by the Canadian Institutes for Health Research and the Deutsche Forschungsgemeinschaft. D.C. is a CIHR Scholar and D.T. a CIHR Scientist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas Tweed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schreiber, K., Crawford, J., Fetter, M. et al. The motor side of depth vision. Nature 410, 819–822 (2001). https://doi.org/10.1038/35071081

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071081

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing