Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Induction of the mammalian node requires Arkadia function in the extraembryonic lineages

Abstract

The early mammalian embryo is patterned by signals emanating from extraembryonic and embryonic signalling centres, most notably the anterior visceral endoderm (AVE) and the node, respectively1. The AVE is responsible for anterior development, whereas further axis specification depends on the node, the equivalent of Spemann's organizer2,3. Formation of the node, at the anterior primitive streak, depends on expression of the transcription factor HNF3β (ref. 4). However, both the source and the nature of the signals responsible for inducing the node have been unknown. Here we describe a recessive lethal mutation, arkadia, generated using gene-trap mutagenesis. Mutant embryos establish an AVE but fail to maintain anterior embryonic structures and lack a node. The mutation has disrupted the Arkadia gene, which encodes a putative intracellular protein containing a RING domain. Arkadia is essential for HNF3β expression in the anterior primitive streak. Analysis with chimaeras, however, shows that Arkadia functions within extraembryonic tissues, revealing that these are required to induce the node. Furthermore, our experiments show that Arkadia interacts genetically with the transforming growth factor (TGF)β-like factor Nodal5,6,7, implying that Nodal mediates the function of Arkadia in node induction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Neurectoderm development in arkadia embryos.
Figure 2: Mesendoderm and definitive endodem in arkadia embryos.
Figure 3: Molecular analysis of Arkadia.
Figure 4: Anterior primitive streak (APS) defects in arkadia embryos.
Figure 5: Arkadia function in the extraembryonic lineages.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Beddington, R. S. & Robertson, E. J. Anterior patterning in mouse. Trends Genet. 14, 277–284 (1998).

    Article  CAS  Google Scholar 

  2. Beddington, R. S. & Robertson, E. J. Axis development and early asymmetry in mammals. Cell 96, 195–209 (1999).

    Article  CAS  Google Scholar 

  3. Tam, P. P. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech. Dev. 68, 3–25 (1997).

    Article  CAS  Google Scholar 

  4. Dufort, D., Schwartz, L., Harpal, K. & Rossant, J. The transcription factor HNF3beta is required in visceral endoderm for normal primitive streak morphogenesis. Development 125, 3015–3025 (1998).

    CAS  PubMed  Google Scholar 

  5. Zhou, X., Sasaki, H., Lowe, L., Hogan, B. L. & Kuehn, M. R. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361, 543–547 (1993).

    Article  ADS  CAS  Google Scholar 

  6. Conlon, F. L., Barth, K. S. & Robertson, E. J. A novel retrovirally induced embryonic lethal mutation in the mouse: assessment of the developmental fate of embryonic stem cells homozygous for the 413.d proviral integration. Development 111, 969–981 (1991).

    CAS  PubMed  Google Scholar 

  7. Varlet, I., Collignon, J. & Robertson, E. J. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124, 1033–1044 (1997).

    CAS  PubMed  Google Scholar 

  8. Friedrich, G. & Soriano, P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 5, 1513–1523 (1991).

    Article  CAS  Google Scholar 

  9. Wood, H. B. & Episkopou, V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre-gastrulation to early somite stages. Mech. Dev. 86, 197–201 (1999).

    Article  CAS  Google Scholar 

  10. Rowitch, D. H. & McMahon, A. P. Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mech. Dev. 52, 3–8 (1995).

    Article  CAS  Google Scholar 

  11. Dressler, G. R., Deutsch, U., Chowdhury, K., Nornes, H. O. & Gruss, P. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109, 787–795 (1990).

    CAS  PubMed  Google Scholar 

  12. Albano, R. M. & Smith, J. C. Follistatin expression in ES and F9 cells and in preimplantation mouse embryos. Int. J. Dev. Biol. 38, 543–547 (1994).

    CAS  PubMed  Google Scholar 

  13. Belo, J. A. et al. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68, 45–57 (1997).

    Article  CAS  Google Scholar 

  14. Echelard, Y. et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 75, 1417–1430 (1993).

    Article  CAS  Google Scholar 

  15. Wilkinson, D. G., Bhatt, S. & Herrmann, B. G. Expression pattern of the mouse T gene and its role in mesoderm formation. Nature 343, 657–659 (1990).

    Article  ADS  CAS  Google Scholar 

  16. Lorick, K. L. et al. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl Acad. Sci. USA 96, 11364–11369 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Neiderländer, C., Walsh, J. L., Episkopou, V. & Jones, C. M. Arkadia enhances nodal-related signalling to induce mesendoderm. Nature 410, 830–834 (2001).

    Article  ADS  Google Scholar 

  18. Filosa, S. et al. Goosecoid and HNF-3beta genetically interact to regulate neural tube patterning during mouse embryogenesis. Development 124, 2843–2854 (1997).

    CAS  PubMed  Google Scholar 

  19. Martinez Barbera, J. P. et al. The homeobox gene Hex is required in definitive endodermal tissues for normal forebrain, liver and thyroid formation. Development 127, 2433–2445 (2000).

    CAS  PubMed  Google Scholar 

  20. Rhinn, M. et al. Sequential roles for Otx2 in visceral endoderm and neuroectoderm for forebrain and midbrain induction and specification. Development 125, 845–856 (1998).

    CAS  PubMed  Google Scholar 

  21. Shawlot, W. et al. Lim1 is required in both primitive streak-derived tissues and visceral endoderm for head formation in the mouse. Development 126, 4925–4932 (1999).

    CAS  PubMed  Google Scholar 

  22. Tam, P. P. & Steiner, K. A. Anterior patterning by synergistic activity of the early gastrula organizer and the anterior germ layer tissues of the mouse embryo. Development 126, 5171–5179 (1999).

    CAS  PubMed  Google Scholar 

  23. Bachiller, D. et al. The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403, 658–661 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Arceci, R. J., King, A. A., Simon, M. C., Orkin, S. H. & Wilson, D. B. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13, 2235–2246 (1993).

    Article  CAS  Google Scholar 

  25. Dziadek, M. & Adamson, E. Localization and synthesis of alphafoetoprotein in post-implantation mouse embryos. J. Embryol. Exp. Morphol. 43, 289–313 (1978).

    CAS  PubMed  Google Scholar 

  26. Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989).

    CAS  PubMed  Google Scholar 

  27. Schier, A. F. & Shen, M. M. Nodal signalling in vertebrate development. Nature 403, 385–389 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Collignon, J., Varlet, I. & Robertson, E. J. Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381, 155–158 (1996).

    Article  ADS  CAS  Google Scholar 

  29. Harland, R. & Gerhart, J. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13, 611–667 (1997).

    Article  CAS  Google Scholar 

  30. Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255–1266 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Gene trap mutagenesis was done in the laboratory of E. J. Robertson at Columbia University, New York. We thank R. Lovell-Badge, T. Jessell, E. Robertson and A. Streit for reading the manuscript; E. L. Ferguson for discussions; E. Robertson for the gift of the GT-carrier and nodal (+/-) mice and T. Rodriguez for rederivation of the latter; P. Soriano for the Rosa βgeo vector and virus-producing cell lines; S.-L. Ang, R. Beddington, E. De Robertis, P. Gruss, T. Jessell and J. Rossant for WISH probes; M. Alexiou, H. Wood and S. Malas for advice and support; and A. Simpkins, R. Grahame, G. Baker and E. Damien for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasso Episkopou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Episkopou, V., Arkell, R., Timmons, P. et al. Induction of the mammalian node requires Arkadia function in the extraembryonic lineages. Nature 410, 825–830 (2001). https://doi.org/10.1038/35071095

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071095

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing