Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Correlated electrons in δ-plutonium within a dynamical mean-field picture

Abstract

Given the practical importance of metallic plutonium, there is considerable interest1,2,3 in understanding its fundamental properties. Plutonium undergoes a 25 per cent increase in volume4 when transformed from its α-phase (which is stable below 400 K) to the δ-phase (stable at around 600 K), an effect that is crucial for issues of long-term storage and disposal. It has long been suspected that this unique property is a consequence of the special location of plutonium in the periodic table, on the border between the light and heavy actinides—here, electron wave–particle duality (or itinerant versus localized behaviour) is important5. This situation has resisted previous theoretical treatment. Here we report an electronic structure method, based on dynamical mean-field theory, that enables interpolation between the band-like and atomic-like behaviour of the electron. Our approach enables us to study the phase diagram of plutonium, by providing access to the energetics and one-electron spectra of strongly correlated systems. We explain the origin of the volume expansion between the α- and δ-phases, predict the existence of a strong quasiparticle peak near the Fermi level and give a new viewpoint on the physics of plutonium, in which the α- and δ-phases are on opposite sides of the interaction-driven localization–delocalization transition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated total energy for plutonium as a function of volume using dynamical mean-field theory (DMFT).
Figure 2: Comparison between calculated density of states for δ-plutonium using dynamical mean-field theory (DMFT; solid line) and recent photoemission experiments20 (circles).

Similar content being viewed by others

References

  1. Broad, W. J. Russian plutonium research raises nuclear questions. New York Times 25 Jan. (2000).

  2. Jeanloz, R. Science-based stockpile stewardship. Phys. Today 12, 44–50 (2000).

    Article  Google Scholar 

  3. Hecker, S. S. & Timofeeva, L. F. A tale of two diagrams. Los Alamos Sci. 26, 244–251 (2000).

    CAS  Google Scholar 

  4. Freeman, A. J. & Darby, J. B. (eds) The Actinides: Electronic Structure and Related Properties Vols 1 and 2 (Academic, New York, 1974).

    Google Scholar 

  5. Johansson, B. The α-γ transition in cerium is a Mott transition. Phil. Mag. 30, 469–479 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Lundqvist, S. & March, S. H. (eds) Theory of the Inhomogeneous Electron Gas (Plenum, New York, 1983).

    Book  Google Scholar 

  7. Soderlind, P., Eriksson, O., Johansson, B. & Wills, J. M. Electronic properties of f-electron metals using the generalized gradient approximation. Phys. Rev. B 50, 7291–7294 (1994).

    Article  ADS  CAS  Google Scholar 

  8. Jones, M. D., Boettger, J. C., Albers, R. C. & Singh, D. J. Theoretical atomic volumes of the light actinides. Phys. Rev. B 61, 4644–4650 (2000).

    Article  ADS  CAS  Google Scholar 

  9. Solovyev, I. V., Lichtenstein, A. I., Gubanov, V. A., Antropov, V. P. & Andersen, O. K. Spin-polarized relativistic linear-muffin-tin-orbital method: volume-dependent electronic structure and magnetic moment of plutonium. Phys. Rev. B 43, 14414–14422 (1991).

    Article  ADS  CAS  Google Scholar 

  10. Hubbard, J. Electron correlations in narrow energy bands. Proc. R. Soc. Lond. A 281, 401–423 (1964).

    Article  ADS  Google Scholar 

  11. Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Anisimov, V. I., Poteryaev, A. I., Korotin, M. A., Anokhin, A. O. & Kotliar, G. First-principles calculations of the electronic structure and spectra of strongly correlated systems: dynamical mean-field theory. J. Phys. Condens. Matt. 35, 7359–7367 (1997).

    Article  ADS  Google Scholar 

  13. Nekrasov, I. A. et al. Calculation of photoemission spectra of the doped Mott insulator La1-xSrxTiO3 using LDA+DMFT(QMC). Eur. Phys. J. B 18, 55–61 (2000).

    Article  ADS  CAS  Google Scholar 

  14. Anderson, P. W. Localized magnetic states in metals. Phys. Rev. 124, 41–53 (1961).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  15. Andersen, O. K. Linear methods in band theory. Phys. Rev. B 12, 3060–3083 (1975).

    Article  ADS  CAS  Google Scholar 

  16. Fresard, R. & Kotliar, G. Interplay of Mott transition and ferromagnetism in the orbitally degenerate Hubbard model. Phys. Rev. B 56, 12909–12915 (1997).

    Article  ADS  CAS  Google Scholar 

  17. Nolting, W. & Borgiel, W. Band magnetism in the Hubbard model. Phys. Rev. B 39, 6962–6978 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Anisimov, V. I., Aryasetiawan, F. & Lichtenstein, A. I. First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+U method. J. Phys. Condens. Matter 9, 767–808 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Desclaux, J. P. & Freeman, A J. in Handbook on the Physics and Chemistry of the Actinides (eds Freeman, A. J. & Lander, G. H.) Vol. 1 (Elsevier, Amsterdam, 1984).

    Google Scholar 

  20. Arko, A. J., Joyce, J. J., Morales, L., Wills, J. & Jashley, J. Electronic structure of α- and δ-Pu from photoelectron spectroscopy. Phys. Rev. B 62, 1773–1779 (2000).

    Article  ADS  CAS  Google Scholar 

  21. Savrasov, S. Y. & Kotliar, G. Ground state theory of δ Pu. Phys. Rev. Lett. 84, 3670–3673 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Bouchet, J., Siberchicot, B., Jollet, F. & Pasturel, A. Equilibrium properties of δ-Pu: LDA+U calculations (LDA equivalent to local density approximation). J. Phys. Condens. Matter 12, 1723–1733 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Boring, A. M. & Smith, J. L. Plutonium condensed-matter physics—a survey of theory and experiment. Los Alamos Sci. 26, 91–127 (2000).

    Google Scholar 

  24. Lallement, R. Dilatation et pouvoir thermoelectrique du plutonium α a basse temperature. J. Phys. Chem. Solids 24, 1617–1624 (1963).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Lichtenstein for discussions. This work was supported by the DOE division of Basic Energy Sciences and by Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Y. Savrasov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savrasov, S., Kotliar, G. & Abrahams, E. Correlated electrons in δ-plutonium within a dynamical mean-field picture. Nature 410, 793–795 (2001). https://doi.org/10.1038/35071035

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35071035

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing