Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Invariant scaling relations across tree-dominated communities

A Corrigendum to this article was published on 16 October 2003

Abstract

Organizing principles are needed to link organismal, community and ecosystem attributes across spatial and temporal scales. Here we extend allometric theory—how attributes of organisms change with variation in their size—and test its predictions against worldwide data sets for forest communities by quantifying the relationships among tree size–frequency distributions, standing biomass, species number and number of individuals per unit area. As predicted, except for the highest latitudes, the number of individuals scales as the -2 power of basal stem diameter or as the -3/4 power of above-ground biomass. Also as predicted, this scaling relationship varies little with species diversity, total standing biomass, latitude and geographic sampling area. A simulation model in which individuals allocate biomass to leaf, stem and reproduction, and compete for space and light obtains features identical to those of a community. In tandem with allometric theory, our results indicate that many macroecological features of communities may emerge from a few allometric principles operating at the level of the individual.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Properties of tree-dominated communities.
Figure 2: Size–frequency distributions of forest communities differing in geographic sampling area8,9 calculated for all size bin classes containing ≈ 5 individuals (open symbol) owing to the data splay of statistically under-represented size classes (filled symbols).
Figure 3: Exponents of size–frequency distributions of forest communities.
Figure 5: Results of representative simulations based on the assumptions of the model for biomass allocation (see Fig. 4).
Figure 4: Assumptions used to model biomass allocation among three above-ground plant compartments and stochastic features affecting dispersal and mortality.

Similar content being viewed by others

References

  1. Brown, J. H. Macroecology (Univ. Chicago Press, Chicago, 1995).

    Google Scholar 

  2. Rosenzweig, M. L. Species Diversity in Space and Time (Cambridge Univ. Press, Cambridge, 1995).

    Book  Google Scholar 

  3. Whittaker, R. H. Communities and Ecosystems 2nd edn (Macmillan, New York, 1975).

    Google Scholar 

  4. Tilman, D. & Pacala, S. in Species Diversity in Ecological Communities: Historical and Geographical Perspectives (eds Ricklefs, R. E. & Schluter, D.) 13–25 (Univ. Chicago Press, Chicago, 1993).

    Google Scholar 

  5. Huston, M. A. Biological Diversity (Cambridge Univ. Press, Cambridge, 1994).

    Google Scholar 

  6. Whittaker, R. J. Scaling, energetics and diversity. Nature 401, 865–866 (1999).

    Article  ADS  CAS  Google Scholar 

  7. Ritchie, M. E. & Olff, H. Spatial scaling laws yield a synthetic theory of biodiversity. Nature 400, 557–560 (1999).

    Article  ADS  CAS  Google Scholar 

  8. MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton University Press, Princeton, 1967).

    Google Scholar 

  9. Terborgh, J. On the notion of favorableness in plant ecology. Am. Nat. 107, 481–450 (1973).

    Article  Google Scholar 

  10. Tilman, D. Causes, consequences and ethics of biodiversity. Nature 405, 208–211 (2000).

    Article  CAS  Google Scholar 

  11. Tilman, D., Lehman, C. L., & Thomson, K. T. Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).

    Article  ADS  CAS  Google Scholar 

  12. Gross, K. L., Willig, M. R., Grough, L., Inouye, R. & Cox, S. B. Patterns of species diversity and productivity at different scales in herbaceous plant communities. Oikos 89, 417–427 (2000).

    Article  Google Scholar 

  13. Huston, M. A. et al. No consistent effect of plant diversity on productivity. Science 289, 1255a http://www.sciencemag.org/cgi/reprint/289/5483/1255a (2000).

    Article  Google Scholar 

  14. West, G. B., Brown, J. H. & Enquist, B. J. A general model for the structure and allometry of plant vascular systems. Nature 400, 664–667 (1999).

    Article  ADS  CAS  Google Scholar 

  15. Niklas, K. J. Plant Allometry (Univ. Chicago Press, Chicago, 1994).

    Google Scholar 

  16. Enquist, B. J., Brown, J. H. & West, G. B. Allometric scaling of plant energetics and population density. Nature 395, 163–165 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Enquist, B. J., West, G. B., Charnov, E. L. & Brown, J. H. Allometric scaling of production and life-history variation in vascular plants. Nature 401, 907–911 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Niklas, K. J. & Enquist, B. J. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc. Natl Acad. Sci. USA 98, 2922–2927 (2001).

    Article  ADS  CAS  Google Scholar 

  19. Roy, K., Jablonski, D. & Martien, K. K. Invariant size–frequency distributions along a latitudinal gradient in marine bivalves. Proc. Natl Acad. Sci. USA 97, 13150–13155 (2000).

    Article  ADS  CAS  Google Scholar 

  20. Whittaker, R. H. & Woodwell, G. M. Dimension and production relations of trees and shrubs in the Brookhaven Forest, New York. J. Ecol. 56, 1–25 (1968).

    Article  Google Scholar 

  21. White, J. The allometric interpretation of the self thinning rule. J. Theor. Biol. 89, 475–500 (1981).

    Article  Google Scholar 

  22. Brown, S. Estimating biomass and biomass change of tropical forests. Food and Agricultural Organization of the United Nations Forestry Paper 134 (Rome, 1997).

  23. Morse, D. R., Lawton, J. H., Dodson, M. M. & Williamson, M. H. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314, 731–733 (1985).

    Article  ADS  Google Scholar 

  24. Damuth, J. Population density and body size in mammals. Nature 290, 699–700 (1981).

    Article  ADS  Google Scholar 

  25. Niklas, K. J. Size-dependent variations in plant growth rates and the “3/4-power rule”. Am. J. Bot. 81, 134–144 (1994).

    Article  Google Scholar 

  26. Barenblatt, G. I. & Monin, A. S. Similarity principles for the biology of pelagic animals. Proc. Natl Acad. Sci. USA 80, 3540–3542 (1983).

    Article  ADS  CAS  Google Scholar 

  27. De Liocourt, F. De l'aménagement des sapinières (Bulletin de la Société Forestière de Franche-Comte et Belfort, Besançon, 1898).

    Google Scholar 

  28. Gentry, A. H. Changes in plant community diversity and floristic composition on environmental and geographic gradients. Ann. Miss. Bot. Gar. 75, 1–34 (1988).

    Article  Google Scholar 

  29. Gentry, A. H. in Biodiversity and Conservation of Neotropical and Montane Forests (eds Churchill, S. P. et al.) 103–126 (New York Botanical Garden, New York, 1993).

    Google Scholar 

  30. Waring, R. H., Landsberg, J. & Williams, M. Net primary production of forests: A constant fraction of gross primary production? Tree Physiol. 18, 129–134 (1998).

    Article  Google Scholar 

  31. Valentini, R. et al. Respiration as the main determinant of carbon balance in European forests. Nature 404, 861–865 (2000).

    Article  ADS  CAS  Google Scholar 

  32. Okubo, A & Levin, S. A. A theoretical framework for data analysis of wind dispersal of seeds and pollen. Ecology 70, 329–338 (1989).

    Article  Google Scholar 

  33. Jack, S. B. & Long, J. N. Linkages between silviculture and ecology: an analysis of density management diagrams. Forest Ecol. Manag. 86, 205–220 (1996).

    Article  Google Scholar 

  34. Cannell, M. G. R. World Forest Biomass and Primary Production Data (Academic, New York, 1982).

    Google Scholar 

  35. Olson, J. S., Watts, J. A. & Allison, L. J. Major World Ecosystem Complexes Ranked by Carbon in Live Vegetation: A Database CDIC Numeric Data Collection NDP-01 7 (Oak Ridge National Laboratory, Oak Ridge, 1985).

    Google Scholar 

  36. Niklas, K. J. The Evolutionary Biology of Plants (Univ. Chicago Press, Chicago, 1997).

    Google Scholar 

  37. Niklas, K. J. The evolution of plant body plans—a biomechanical perspective. Ann. Bot. 85, 411–438 (2000).

    Article  Google Scholar 

  38. Niklas, K. J. Morphological evolution through complex domains of fitness. Proc. Natl Acad. Sci. USA 91, 6772–6779 (1994).

    Article  ADS  CAS  Google Scholar 

  39. Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: Global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).

    Article  ADS  CAS  Google Scholar 

  40. Elser, J. J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

We thank D. Ackerly, J. Ackerman, J. Brown, W. Chaloner, K. Harms, J. Haskell, D. Post, T. Phillips, P. Stoll, J. Valentine, R. Whittaker, J. Williams and M. Willig for discussions or comments on the manuscript; J. Miller, P. Raven and the Missouri Botanical Garden for help in disseminating the Gentry database; and J. Pringle and A. Landcaster for programming assistance with SWARM. This work stems in part from the Body Size in Ecology and Evolution Working Group sponsored by The National Center for Ecological Analysis and Synthesis (NCEAS, a centre funded by the NSF, the University of California Santa Barbara and the State of California). In particular we wish to acknowledge J. Haskell for critical help with the Gentry data; G. West and B. Tiffney for support; and F. Smith and the members of the body size working group for their input to this project. B.J.E. was supported by the NSF, the Santa Fe Institute and NCEAS. K.J.N. was supported by an Alexander von Humboldt Forschungspreis and NYS Hatch grant funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Enquist.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enquist, B., Niklas, K. Invariant scaling relations across tree-dominated communities. Nature 410, 655–660 (2001). https://doi.org/10.1038/35070500

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35070500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing