Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis

Abstract

The transcriptional coactivator p300 interacts with many transcription factors that participate in a broad spectrum of biological activities, such as cellular differentiation, homeostasis and growth control1,2. Mouse embryos lacking both p300 alleles die around mid-gestation, with pleiotropic defects in morphogenesis, in cell differentiation and, unexpectedly, in cell proliferation because of reduced DNA synthesis3. Here we show that p300 may have a role in DNA repair synthesis through its interaction with proliferating cell nuclear antigen (PCNA). We show that in vitro and in vivo p300 forms a complex with PCNA that does not depend on the S phase of cell cycle. A large fraction of both p300 and PCNA colocalize to speckled structures in the nucleus. Furthermore, the endogenous p300–PCNA complex stimulates DNA synthesis in vitro. Chromatin immunoprecipitation experiments indicate that p300 is associated with freshly synthesized DNA after ultraviolet irradiation. Our results suggest that p300 may participate in chromatin remodelling at DNA lesion sites to facilitate PCNA function in DNA repair synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PCNA form a complex.
Figure 2: Colocalization of p300 and PCNA in HeLa cells in vivo.
Figure 3: Mapping of the PCNA interaction domain in p300.
Figure 4: p300 is associated with freshly repaired DNA.

Similar content being viewed by others

References

  1. Eckner, R. et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8, 869–884 (1994).

    Article  CAS  Google Scholar 

  2. Giordano, A. & Avantaggiati, M. L. p300 and CBP: partners for life and death. J. Cell. Physiol. 181, 218–230 (1999).

    Article  CAS  Google Scholar 

  3. Yao, T. P. et al. Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell 93, 361–372 (1998).

    Article  CAS  Google Scholar 

  4. Krishna, T. S., Kong, X. P., Gary, S., Burgers, P. M. & Kuriyan, J. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79, 1233–1243 (1994).

    Article  CAS  Google Scholar 

  5. Jonsson, Z. O., Hindges, R. & Hübscher, U. Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J. 17, 2412–2425 (1998).

    Article  CAS  Google Scholar 

  6. Jonsson, Z. O. & Hübscher, U. Proliferating cell nuclear antigen: more than a clamp for DNA polymerases. BioEssays 19, 967–975 (1997).

    Article  CAS  Google Scholar 

  7. Moggs, J. G. et al. A CAF-1-PCNA-mediated chromatin assembly pathway triggered by sensing DNA damage. Mol. Cell. Biol. 20, 1206–1218 (2000).

    Article  CAS  Google Scholar 

  8. Podust, V. N. & Hübscher, U. Lagging strand DNA synthesis by calf thymus DNA polymerases alpha, beta, delta and epsilon in the presence of auxiliary proteins. Nucleic Acids Res. 21, 841–846 (1993).

    Article  CAS  Google Scholar 

  9. Waga, S. & Stillman, B. The DNA replication fork in eukaryotic cells. Annu. Rev. Biochem. 67, 721–751 (1998).

    Article  CAS  Google Scholar 

  10. Nichols, A. F. & Sancar, A. Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res. 20, 2441–2446 (1992).

    Article  CAS  Google Scholar 

  11. Shivji, K. K., Kenny, M. K. & Wood, R. D. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69, 367–374 (1992).

    Article  CAS  Google Scholar 

  12. Baldwin, A. S. Jr, Azizkhan, J. C., Jensen, D. E., Beg, A. A. & Coodly, L. R. Induction of NF-kappa B DNA-binding activity during the G0-to-G1 transition in mouse fibroblasts. Mol. Cell. Biol. 11, 4943–4951 (1991).

    Article  CAS  Google Scholar 

  13. Almendral, J. M. et al. Complexity of the early genetic response to growth factors in mouse fibroblasts. Mol. Cell. Biol. 8, 2140–2148 (1988).

    Article  CAS  Google Scholar 

  14. Muller, R., Bravo, R., Burckhardt, J. & Curran, T. Induction of c-fos gene and protein by growth factors precedes activation of c-myc. Nature 312, 716–720 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Cleaver, J. E. & States, J. C. The DNA damage-recognition problem in human and other eukaryotic cells: the XPA damage binding protein. Biochem. J. 328, 1–12 (1997).

    Article  CAS  Google Scholar 

  16. de Laat, W. L., Jaspers, N. G. & Hoeijmakers, J. H. Molecular mechanism of nucleotide excision repair. Genes Dev. 13, 768–785 (1999).

    Article  CAS  Google Scholar 

  17. Sancar, A. DNA excision repair. Annu. Rev. Biochem. 65, 43–81 (1996).

    Article  CAS  Google Scholar 

  18. Guzder, S. N., Sung, P., Prakash, L. & Prakash, S. Yeast Rad7–Rad16 complex, specific for the nucleotide excision repair of the nontranscribed DNA strand, is an ATP-dependent DNA damage sensor. J. Biol. Chem. 272, 21665–21668 (1997).

    Article  CAS  Google Scholar 

  19. Dallas, P. B. et al. p300/CREB binding protein-related protein p270 is a component of mammalian SWI/SNF complexes. Mol. Cell. Biol. 18, 3596–3603 (1998).

    Article  CAS  Google Scholar 

  20. Pao, G. M., Janknecht, R., Ruffner, H., Hunter, T. & Verma, I. M. CBP/p300 interact with and function as transcriptional coactivators of BRCA1. Proc. Natl Acad. Sci. USA 97, 1020–1025 (1020).

    Article  ADS  Google Scholar 

  21. Zhong, Q. et al. Association of BRCA1 with the hRad50–hMre11–p95 complex and the DNA damage response. Science 285, 747–750 (1999).

    Article  CAS  Google Scholar 

  22. Ogrysko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H. & Nakatani, Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  Google Scholar 

  23. Cho, H. et al. A human RNA polymerase II complex containing factors that modify chromatin structure. Mol. Cell. Biol. 18, 5355–5363 (1998).

    Article  CAS  Google Scholar 

  24. Dresler, S. L. & Frattini, M. G. DNA replication and UV-induced DNA repair synthesis in human fibroblasts are much less sensitive than DNA polymerase alpha to inhibition by butylphenyl-deoxyguanosine triphosphate. Nucleic Acids Res. 14, 7093–7102 (1986).

    Article  CAS  Google Scholar 

  25. Hunting, D. J., Gowans, B. J. & Dresler, S. L. DNA polymerase delta mediates excision repair in growing cells damaged with ultraviolet radiation. Biochem. Cell Biol. 69, 303–308 (1991).

    Article  CAS  Google Scholar 

  26. Coverley, D., Kenny, M. K., Lane, D. P. & Wood, R. D. A role for the human single-stranded DNA binding protein HSSB/RPA in an early stage of nucleotide excision repair. Nucleic Acids Res. 20, 3873–3880 (1992).

    Article  CAS  Google Scholar 

  27. Shibahara, K. & Stillman, B. Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96, 575–585 (1999).

    Article  CAS  Google Scholar 

  28. Perkins, N. D. et al. Regulation of NF-kappaB by cyclin-dependent kinases associated with the p300 coactivator. Science 275, 523–527 (1997).

    Article  CAS  Google Scholar 

  29. Weiser, T. et al. Biochemical and functional comparison of DNA polymerases alpha, delta, and epsilon from calf thymus. J. Biol. Chem. 266, 10420–10428 (1991).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Stucki and Z. Jonsson for pol δ, and wild-type and mutant PCNA; U. Hübscher for critically reading the manuscript; other members of the Institute of Veterinary Biochemistry for helpful advice; and U. Ziegler, S. Koundrioukoff and M.Y. Nakano for technical help. This work was supported in part by the Swiss National Science Foundation (S.H. and P.O.H.), the UBS AG “im Auftrag eines Kunden” (R.I.) and the Olga Mayenfisch Stiftung. M.O.H. is supported by the Kanton of Zürich.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael O. Hottiger.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, S., Hassa, P., Imhof, R. et al. Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature 410, 387–391 (2001). https://doi.org/10.1038/35066610

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35066610

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing