Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Guard cell abscisic acid signalling and engineering drought hardiness in plants

Abstract

Guard cells are located in the epidermis of plant leaves, and in pairs surround stomatal pores. These control both the influx of CO2 as a raw material for photosynthesis and water loss from plants through transpiration to the atmosphere. Guard cells have become a highly developed system for dissecting early signal transduction mechanisms in plants. In response to drought, plants synthesize the hormone abscisic acid, which triggers closing of stomata, thus reducing water loss. Recently, central regulators of guard cell abscisic acid signalling have been discovered. The molecular understanding of the guard cell signal transduction network opens possibilities for engineering stomatal responses to control CO2 intake and plant water loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Simplified model for proposed functions of positive and negative regulators mediating guard cell ABA signal transduction.
Figure 2: ABA-induced [Ca2+]cyt oscillations in Arabidopsis guard cells expressing yellow cameleon 2.1. [Ca2+]cyt oscillations elicited by ABA are indicated by an increase in the fluorescence emission ratio 535/480 nm14.

Similar content being viewed by others

References

  1. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996).

    Article  ADS  CAS  Google Scholar 

  2. MacRobbie, E. A. C. Signal transduction and ion channels in guard cells. Phil. Trans. R. Soc. Lond. B 353, 1475–1488 (1998).

    Article  CAS  Google Scholar 

  3. Schroeder, J. I. & Hedrich, R. Involvement of ion channels and active transport in osmoregulation and signaling of higher plant cells. Trends Biochem. Sci. 14, 187–192 (1989).

    Article  CAS  Google Scholar 

  4. McAinsh, M. R., Brownlee, C. & Hetherington, A. M. Abscisic acid-induced elevation of guard cell cytosolic Ca2+ precedes stomatal closure. Nature 343, 186–188 (1990).

    Article  ADS  CAS  Google Scholar 

  5. Leyman, B., Geelen, D., Quintero, F. J. & Blatt, M. R. A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283, 537–540 (1999).

    Article  ADS  CAS  Google Scholar 

  6. Sutton, F., Paul, S. S., Wang, X. -Q. & Assmann, S. M. Distinct abscisic acid signaling pathways for modulation of guard cell versus mesophyll cell potassium channels revealed by expression studies in Xenopus laevis oocytes. Plant Physiol. 124, 223–230 (2000).

    Article  CAS  Google Scholar 

  7. Homann, U. & Thiel, G. Unitary exocytotic and endocytotic events in guard-cell protoplasts during osmotically driven volume changes. FEBS Lett. 460, 495–499 (1999).

    Article  CAS  Google Scholar 

  8. Ward, J. M., Pei, Z. -M. & Schroeder, J. I. Roles of ion channels in initiation of signal transduction in higher plants. Plant Cell 7, 833–844 (1995).

    Article  CAS  Google Scholar 

  9. McAinsh, M. R., Brownlee, C. & Hetherington, A. M. Calcium ions as second messengers in guard cell signal transduction. Physiol. Planta 100, 16–29 (1997).

    Article  CAS  Google Scholar 

  10. Allen, G. J., Kuchitsu, K., Chu, S. P., Murata, Y. & Schroeder, J. I. Arabidopsis abi1-1 and abi2-1 phosphatase mutations reduce abscisic acid-induced cytoplasmic calcium rises in guard cells. Plant Cell 11, 1785–1798 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Gilroy, S., Fricker, M. D., Read, N. D. & Trewavas, A. J. Role of calcium in signal transduction of Commelina guard cells. Plant Cell 3, 333–344 (1991).

    Article  CAS  Google Scholar 

  12. Grabov, A. & Blatt, M. R. Membrane voltage initiates Ca2+ waves and potentiates Ca2+ increases with abscisic acid in stomatal guard cells. Proc. Natl Acad. Sci. USA 95, 4778–4783 (1998).

    Article  ADS  CAS  Google Scholar 

  13. Staxen, I. et al. Abscisic acid induces oscillations in guard-cell cytosolic free calcium that involve phosphoinositide-specific phospholipase C. Proc. Natl Acad. Sci. USA 96, 1779–1784 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Allen, G. J. et al. Cameleon calcium indicator reports cytoplasmic calcium dynamics in Arabidopsis guard cells. Plant J. 19, 735–747 (1999).

    Article  CAS  Google Scholar 

  15. Pei, Z.-M. et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731–734 (2000).

    Article  ADS  CAS  Google Scholar 

  16. Himmelbach, A., Iten, M. & Grill, E. Signalling of abscisic acid to regulate plant growth. Phil. Trans. R. Soc. Lond. B 353, 1439–1444 (1998).

    Article  CAS  Google Scholar 

  17. Hamilton, D. W. A., Hills, A., Kohler, B. & Blatt, M. R. Ca2+ channels at the plasma membrane of stomatal guard cells are activated by hyperpolarization and abscisic acid. Proc. Natl Acad. Sci. USA 97, 4967–4972 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Lee, S. et al. Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol. 121, 147–152 (1999).

    Article  CAS  Google Scholar 

  19. Torsethaugen, G., Pell, E. J. & Assmann, S. M. Ozone inhibits guard cell K+ channels implicated in stomatal opening. Proc. Natl Acad. Sci. USA 96, 13577–13582 (1999).

    Article  ADS  CAS  Google Scholar 

  20. Leckie, C. P., McAinsh, M. R., Allen, G. J., Sanders, D. & Hetherington, A. M. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl Acad. Sci. USA 95, 15837–15842 (1998).

    Article  ADS  CAS  Google Scholar 

  21. MacRobbie, E. A. C. ABA activates multiple Ca2+ fluxes in stomatal guard cells, triggering vacuolar K+ (Rb+) release. Proc. Natl Acad. Sci. USA 97, 12361–12368 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Jacob, T., Ritchie, S., Assmann, S. M. & Gilroy, S. Abscisic acid signal transduction in guard cells is mediated by phospholipase D activity. Proc. Natl Acad. Sci. USA 96, 12192–12197 (1999).

    Article  ADS  CAS  Google Scholar 

  23. Allen, G. J. et al. Alteration of stimulus-specific guard cell calcium oscillations and stomatal closing in Arabidopsis det3 mutant. Science 289, 2338–2342. (2000).

    Article  ADS  CAS  Google Scholar 

  24. Lemtiri-Chlieh, F., MacRobbie, E. A. C. & Brealey, C. A. Inositol hexakisphosphate is a physiological signal regulating the K+-inward rectifying conductance in guard cells. Proc. Natl Acad. Sci. USA 97, 8687–8692 (2000).

    Article  ADS  CAS  Google Scholar 

  25. Armstrong, F. et al. Sensitivity to abscisic acid of guard cell K+ channels is suppressed by ABI1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc. Natl Acad. Sci. USA 92, 9520–9524 (1995).

    Article  ADS  CAS  Google Scholar 

  26. Schmidt, C., Schelle, I., Liao, Y. J. & Schroeder, J. I. Strong regulation of slow anion channels and abscisic acid signaling in guard cells by phosphorylation and dephosphorylation events. Proc. Natl Acad. Sci. USA 92, 9535–9539 (1995).

    Article  ADS  CAS  Google Scholar 

  27. Li, J. & Assmann, S. An abscisic acid-activated and calcium-independent protein kinase from guard cells of fava bean. Plant Cell 8, 2359–2368 (1996).

    Article  CAS  Google Scholar 

  28. Mori, I. & Muto, S. Abscisic acid activates a 48-kilodalton protein kinase in guard cell protoplasts. Plant Physiol. 113, 833–840 (1997).

    Article  CAS  Google Scholar 

  29. Pei, Z. -M., Kuchitsu, K., Ward, J. M., Schwarz, M. & Schroeder, J. I. Differential abscisic acid regulation of guard cell slow anion channels in Arabdiopsis wild-type and abi1 and abi2 mutants. Plant Cell 9, 409–423 (1997).

    Article  CAS  Google Scholar 

  30. Gosti, F. et al. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11, 1897–1910 (1999).

    Article  CAS  Google Scholar 

  31. Li, J., Want, X., Watson, M. B. & Assmann, S. M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 287, 300–303 (2000).

    Article  ADS  CAS  Google Scholar 

  32. Leung, J. & Giraudat, J. Abscisic acid signal transduction. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 199–222 (1998).

    Article  CAS  Google Scholar 

  33. Knetsch, M. L. W., Wang, M., Snaar-Jagalska, B. E. & Heimovaara-Dijkstra, S. Abscisic acid induces mitogen-activated protein kinase activation in barley aleurone protoplasts. Plant Cell 8, 1061–1067 (1996).

    Article  CAS  Google Scholar 

  34. Sheen, J. Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274, 1900–1902 (1996).

    Article  ADS  CAS  Google Scholar 

  35. Pawson, T. & Scott, J. D. Signaling through scaffold, anchoring, and adaptor proteins. Science 278, 2075–2080 (1997).

    Article  ADS  CAS  Google Scholar 

  36. Ferl, R. J. 14-3-3 proteins and signal transduction. Ann. Rev. Plant Physiol. Plant Mol. Biol. 47, 49–73 (1996).

    Article  CAS  Google Scholar 

  37. Kinoshita, T. & Shimazaki, K. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18, 5548–5558 (1999).

    Article  CAS  Google Scholar 

  38. Leonhardt, N., Vavasseur, A. & Forestier, C. ATP-binding cassette modulators control abscisic acid-regulated slow anion channels in guard cells. Plant Cell 11, 1141–1151 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Leonhardt, N., Marin, E., Vavasseur, A. & Forestier, C. Evidence for the existence of a sulfonylurea-receptor-like protein in plants: Modulation of stomatal movements and guard cell potassium channels by sulfonylureas and potassium channel openers. Proc. Natl Acad. Sci. USA 94, 14156–14161 (1997).

    Article  ADS  CAS  Google Scholar 

  40. Cutler, S., Ghassemian, M., Bonetta, D., Cooney, S. & McCourt, P. A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis. Science 273, 1239–1241 (1996).

    Article  ADS  CAS  Google Scholar 

  41. Pei, Z. -M., Ghassemian, M., Kwak, C. M., McCourt, P. & Schroeder, J. I. Role of farnesyltransferase in ABA regulation of guard cell anion channels and plant water loss. Science 282, 287–290 (1998).

    Article  ADS  CAS  Google Scholar 

  42. Yates, J. R. I. Mass spectrometry from genomics to proteomics. Trends Genet. 16, 5–8 (2000).

    Article  CAS  Google Scholar 

  43. Plesch, G., Kamann, E. & Müller-Röber, B. Cloning of regulatory sequences mediating guard-cell-specific gene expression. Gene 249, 83–89 (2000).

    Article  CAS  Google Scholar 

  44. Grabov, A. & Blatt, M. R. Co-ordination of signalling elements in guard cell ion channel control. J. Exp. Bot. 49, 351–360. (1998).

    Article  Google Scholar 

  45. Allen, G. J. & Sanders, D. in Advances in Botanical Research Incorporating Advances in Plant Pathology: The Plant Vacuole (eds Leigh, R. A. & Sanders, D.) 217–252 (Academic Press, San Diego, 1997).

    Google Scholar 

  46. Assmann, S. M. & Shimazaki, K. The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiol. 119, 809–815 (1999).

    Article  CAS  Google Scholar 

  47. Pottossin, I. I., Tikhonova, L. I., Hedrich, R. & Schonknecht, G. Slowly activating vacuolar channels can not mediate Ca2+-induced Ca2+ release. Plant J. 12, 1387-1398 (1997).

    Article  Google Scholar 

  48. Bewell, M. A., Maathuis, F. J. M., Allen, G. J. & Sanders, D. Calcium-induced calcium release mediated by a voltage-activated cation channel in vacuolar vesicles from red beet. FEBS Lett. 458, 41–44 (1999).

    Article  CAS  Google Scholar 

  49. Wu, Y. et al. Abscisic acid signaling through cyclic ADP-ribose in plants. Science 278, 2126–2130 (1997).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank Z.-M. Pei for discussions and help with figures and M. Ghassemian, N. Crawford, N. Spitzer, D. Waner and N. Leonhardt for comments. Supported by NSF, NIH and DOE grants (J.I.S.) and HFSP fellowships (J.M.K. and G.A.).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schroeder, J., Kwak, J. & Allen, G. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410, 327–330 (2001). https://doi.org/10.1038/35066500

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35066500

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing