Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress
  • Published:

Humans in space

Abstract

Many successful space missions over the past 40 years have highlighted the advantages and necessity of humans in the exploration of space. But as space travel becomes ever more feasible in the twenty-first century, the health and safety of future space explorers will be paramount. In particular, understanding the risks posed by exposure to radiation and extended weightlessness will be crucial if humans are to travel far from Earth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Hoffman, S. J. & Kaplan, D. L. (eds) Human Exploration of Mars: The Reference Mission of the NASA Mars Exploration Study Teamhttp://www-sn.jsc.nasa.gov/marsref/contents.html〉 (Lyndon B. Johnson Space Center, Houston, TX, 1997).

    Google Scholar 

  2. Space Studies Board, National Research Council. Scientific Opportunities in the Human Exploration of Space (National Academy Press, Washington DC, 1994).

  3. Special Report: Sending Astronauts to Mars 〈http://www.sciam.com/2000/0300issue/0300currentissue.htmlSci. Am. 97 (March 2000).

  4. Nicogossian, A., Huntoon, C. & Pool, S. (eds) Space Physiology and Medicine 3rd edn (Lea and Febiger, Philadelphia, 1994).

    Google Scholar 

  5. Morey-Holton, E. R., Whalen, R. T., Arnaud, S. B. & Van Der Meulen, M. C. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 691–719 (American Physiological Society, New York, 1996).

    Google Scholar 

  6. Grigoriev, A. I. et al. Clinical and physiological evaluation of bone changes among astronauts after long-term space flights. Aviakosm Ekolog Med. 32, 21–25 (1998). [In Russian.]

    CAS  PubMed  Google Scholar 

  7. Vico, L. et al. Effects of long-term microgravity exposure on cancellous and cortical weight-bearing bones of cosmonauts. Lancet 355, 1607–1611 (2000).

    Article  CAS  Google Scholar 

  8. Smith, S. M. et al. Calcium metabolism before, during and after a 3-month spaceflight: kinetic and biochemical changes. Am. J. Physiol. 277, R1–R10 (1999).

    Article  CAS  Google Scholar 

  9. Buckey, J. C. et al. Orthostatic intolerance following spaceflight. J. Appl. Physiol. 81, 7–18 (1996).

    Article  Google Scholar 

  10. Wautenpaugh, D. E. & Hargens, A. R. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 631–674 (American Physiological Society, New York, 1996).

    Google Scholar 

  11. Reyes, C., Freeman-Perez, S. & Fritsch-Yelle, J. Orthostatic intolerance following short and long duration spaceflight. FASEB J. 13, A1048 (1999).

    Google Scholar 

  12. Fritsch-Yelle, J. M. et al. An episode of ventricular tachycardia during long-duration spaceflight. Am. J. Cardiol. 81, 1391–1392 (1998).

    Article  CAS  Google Scholar 

  13. Levine, B. D., Zuckerman, J. H. & Pawelczyk, J. A. Cardiac atrophy after bed-rest deconditioning: a non-neural mechanism for orthostatic intolerance. Circulation 96, 517–525 (1997).

    Article  CAS  Google Scholar 

  14. Oman, C. M., Lichtenberg, B. K., Money, K. E. & McCoy, R. K. MIT/Canadian vestibular experiments on the Spacelab-1 mission: space motion sickness: symptoms, stimuli, and predictability. Exp. Brain Res. 64, 316–334 (1986).

    Article  CAS  Google Scholar 

  15. Lackner, J. R. & DiZio, P. Human orientation and movement control in weightless and artificial gravity environments. Exp. Brain Res. 130, 2–26 (2000).

    Article  CAS  Google Scholar 

  16. Reschke, M. F., Bloomberg, J. J., Harm, D. K. & Parker, D. E. in Space Physiology and Medicine 3rd edn (eds Nicogossian, A. E., Huntoon, C. L. & Pool, S. L.) 261–285 (Lea and Febiger, Philadelphia, 1994).

    Google Scholar 

  17. Young, L. R., Oman, C. M., Watt, D. G. D., Money, K. E. & Lichtenberg, B. K. Spatial orientation in weightlessness and readaptation to Earth's gravity. Science 225, 205–208 (1984).

    Article  ADS  CAS  Google Scholar 

  18. Daunton, N. G. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 765–783 (American Physiological Society, New York, 1996).

    Google Scholar 

  19. Baldwin, K. M. Effect of spaceflight on the functional, biochemical, and metabolic properties of skeletal muscle. Med. Sci. Sports Exerc. 28, 983–987 (1996).

    Article  CAS  Google Scholar 

  20. Edgerton, V. R. et al. Human fiber size and enzymatic properties after 5 and 11 days of spaceflight. J. Appl. Physiol. 78, 1733–1739 (1995).

    Article  CAS  Google Scholar 

  21. Fitts, R. H., Riley, D. R. & Widrick, J. J. Physiology of a microgravity environment. Invited review: Microgravity and skeletal muscle. J. Appl. Physiol. 89, 823–839 (2000).

    Article  CAS  Google Scholar 

  22. Edgerton, V. R. & Roy, R. R. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 721–763 (American Physiological Society, New York, 1996).

    Google Scholar 

  23. Czeisler, C. A. & Khalsa, S. B. in Principles and Practice of Sleep Medicine 3rd edn (eds Kryger, M. H., Roth, T. & Dement, W. C.) 353–375 (Saunders, Philadelphia, 2000).

    Google Scholar 

  24. Gündel, A., Polyakov, V. V. & Zulley, J. The alteration of human sleep and circadian rhythms during spaceflight. J. Sleep Res. 6, 1–8 (1997).

    Article  Google Scholar 

  25. Taylor, G. R. Overview of spaceflight immunology studies. J. Leukoc. Biol. 54, 179–188 (1993).

    Article  CAS  Google Scholar 

  26. Gmünder, F. K. & Cogoli, A. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 799–814 (American Physiological Society, New York, 1996).

    Google Scholar 

  27. Kanas, N. Psychiatric issues affecting long duration space missions. Aviat. Space Environ. Med. 69, 1211–1216 (1998).

    CAS  PubMed  Google Scholar 

  28. Ellis, S. R. Collision in space. Ergon. Design 8, 4–9 (2000).

    Article  CAS  Google Scholar 

  29. Connors, M. M., Harrison, A. A. & Akins, F. R. Living Aloft (NASA, Washington, 1985).

    Google Scholar 

  30. Palinkas, L., Gunderson, E. K. E., Holland, A. W., Miller, C. & Johnson, J. C. Predictors of behavior and performance in extreme environments: the Antarctic space analogue program. Aviat. Space Environ. Med. 71, 619–625 (2000).

    CAS  PubMed  Google Scholar 

  31. Schimmerling, W. Radiobiological problems in space: an overview. Radiat. Environ. Biophys. 31, 197–203 (1992).

    Article  CAS  Google Scholar 

  32. Nelson, G. A. in Handbook of Physiology. Section 4: Environmental Physiology (eds Fregly, M. J. & Blatteis, C. M.) 785–798 (American Physiological Society, New York, 1996).

    Google Scholar 

  33. Space Studies Board, National Research Council. Radiation Hazards to Crews of Interplanetary Missions (National Academy Press, Washington DC, 1996).

  34. Vazquez, M. E. Neurobiological problems in long-term deep space flights. Adv. Space Res. 22, 171–183 (1998).

    Article  ADS  CAS  Google Scholar 

  35. Azzam, E. I., de Toledo, S. M. & Little, J. B. Direct evidence for the participation of gap junction-mediated intercellular communication in the transmission of damage signals from α-particle irradiated to nonirradiated cells. Proc. Natl Acad. Sci. USA 98, 473–478 (2001).

    ADS  CAS  PubMed  Google Scholar 

  36. Kadhim, M. A. et al. Transmission of chromosomal instability after plutonium alpha-particle irradiation. Nature 355, 738–740 (1992).

    Article  ADS  CAS  Google Scholar 

  37. Boyd, C. A. R. & Noble, D. (eds) The Logic of Life: The Challenge of Integrative Physiology (Oxford Univ. Press, Oxford, 1993).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge many helpful discussions with R. J. Cohen, J. F. Dicello, D. F. Dinges, C. Golden, A. R. Kennedy, J. I. Leonard, C. M. Oman, R. J. Schwartz and J. R. Shapiro. Support for the preparation of this paper was provided by NASA, both directly and through Cooperative Agreement NCC 9-58 with the National Space Biomedical Research Institute.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, R., Averner, M. Humans in space. Nature 409, 1115–1118 (2001). https://doi.org/10.1038/35059243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35059243

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing