Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space

Abstract

Nuclei undergoing fission can be described by a multi-dimensional potential-energy surface that guides the nuclear shape evolution—from the ground state, through intermediate saddle points and finally to the configurations of separated fission fragments. Until now, calculations have lacked adequate exploration of the shape parameterization of sufficient dimensionality to yield features in the potential-energy surface (such as multiple minima, valleys, saddle points and ridges) that correspond to characteristic observables of the fission process. Here we calculate and analyse five-dimensional potential-energy landscapes based on a grid of 2,610,885 deformation points. We find that observed fission features—such as the distributions of fission fragment mass and kinetic energy, and the different energy thresholds for symmetric and asymmetric fission—are very closely related to topological features in the calculated five-dimensional energy landscapes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Asymmetric and symmetric fission probabilities for 227Ra as functions of the excitation energy in the fissioning nucleus.
Figure 2: Nuclear charge yield in electromagnetic-induced fission of 234U from ref.
Figure 3: Five-dimensional shape parameterization used in our potential-energy calculation.
Figure 4: Calculated potential-energy valleys and ridges and corresponding nuclear shapes for 228Ra.
Figure 5: Calculated potential-energy valleys and ridges and corresponding nuclear shapes for 234U.
Figure 6: Several saddle-point shapes for 256Fm and 258Fm calculated on the grid in ref. 22.
Figure 7: Calculated (white circles) and measured (black circles)26–28 average mass division in asymmetric fission for sequences of even isotopes of Th, U, Pu, Cm, Cf, and Fm.

Similar content being viewed by others

References

  1. Meitner, L. & Frisch, O. R. Disintegration of uranium by neutrons: A new type of nuclear reaction. Nature 143, 239–240 (1939).

    Article  ADS  CAS  Google Scholar 

  2. Bohr, N. & Wheeler, J. A. The mechanism of fission. Phys. Rev. 56, 426–450 (1939).

    Article  ADS  CAS  Google Scholar 

  3. Hahn, O. & Strassmann, F. Über den Nachweiss und das Verhalten der bei der Bestrahlung des Urans mittels Neutronen entstehenden Erdalkalimetalle. Naturwissenschaften 27, 11–15 (1939).

    Article  ADS  CAS  Google Scholar 

  4. Frankel, S. & Metropolis, N. Liquid-drop model of fission. Phys. Rev. 72, 914–925 (1947).

    Article  ADS  CAS  Google Scholar 

  5. Strutinsky, V. M. Shell effects in nuclear masses and deformation energies. Nucl. Phys. A 95, 420–442 (1967).

    Article  ADS  Google Scholar 

  6. Strutinsky, V. M. Shells in deformed nuclei. Nucl. Phys. A 122, 1–33 (1968).

    Article  ADS  Google Scholar 

  7. Nilsson, S. G. et al. On the nuclear structure and stability of heavy and superheavy elements. Nucl. Phys. A 131, 1–66 (1969).

    Article  ADS  CAS  Google Scholar 

  8. Pashkevich, V. V. The energy of non-axial deformation of heavy nuclei. Nucl. Phys. A 133, 400–404 (1969).

    Article  ADS  CAS  Google Scholar 

  9. Möller, P. & Nilsson, S. G. The fission barrier and odd-multipole shape distortions. Phys. Lett. 31B, 283–286 (1970).

    Article  ADS  Google Scholar 

  10. Brack, M. et al. Funny hills: The shell-correction approach to nuclear shell effects and its applications to the fission process. Rev. Mod. Phys. 44, 320–405 (1972).

    Article  ADS  CAS  Google Scholar 

  11. Nix, J. R. Calculation of fission barriers for heavy and superheavy nuclei. Annu. Rev. Nucl. Sci. 22, 65–120 (1972).

    Article  ADS  CAS  Google Scholar 

  12. Möller, P., Nix, J. R., Myers, W. D. & Swiatecki, W. J. Nuclear ground-state masses and deformations. Atom. Data Nucl. Data Tables 59, 185–381 (1995).

    Article  ADS  Google Scholar 

  13. Aboussir, Y., Pearson, J. M., Dutta, A. K. & Tondeur, F. Nuclear-mass formula via an approximation to the Hartree-Fock method. Atom. Data Nucl. Data Tables 61, 127–176 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Möller, P. & Nix, J. R. Potential-energy surfaces for asymmetric heavy-ion reactions. Nucl. Phys. A 281, 354–372 (1977).

    Article  ADS  Google Scholar 

  15. Möller, P., Nix, J. R. & Swiatecki, W. J. Calculated fission properties of the heaviest elements. Nucl. Phys. A 469, 1–50 (1987).

    Article  ADS  Google Scholar 

  16. Möller, P., Nix, J. R. & Swiatecki, W. J. New developments in the calculation of heavy-element fission barriers. Nucl. Phys. A 492, 349–387 (1989).

    Article  ADS  Google Scholar 

  17. Armbruster, P. Nuclear structure in cold rearrangement processes in fission and fusion. Rep. Prog. Phys. 62, 465–525 (1999).

    Article  ADS  CAS  Google Scholar 

  18. Britt, H. C., Wegner, H. E. & Gursky, J. C. Energetics of charged particle-induced fission reactions. Phys. Rev. 129, 2239–2252 (1963).

    Article  ADS  CAS  Google Scholar 

  19. Konecny, E., Specht, H. J. & Weber, J. in Proc. Third IAEA Symp. Phys. Chem. Fission Vol. II, 3–18 (International Atomic Energy Agency, Vienna, 1974).

    Google Scholar 

  20. Ohtsuki, T., Nakahara, H. & Nagame, Y. Systematic variation of fission barrier heights for symmetrical and asymmetric mass divisions. Phys. Rev. C 48, 1667–1676 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Nagame, Y. et al. Bimodal nature of low energy fission of light actinides. Radiochim. Acta 78, 3–10 (1997).

    Article  CAS  Google Scholar 

  22. Möller, P. & Iwamoto, A. Realistic fission saddle-point shapes. Phys. Rev. C 61, 47602-1–4 (2000).

    Article  ADS  Google Scholar 

  23. Möller, P., Nix, J. R. & Kratz, K.-L. Nuclear properties for astrophysical and radioactive-ion-beam applications. Atom. Data Nucl. Data Tables 66, 131–343 (1997).

    Article  ADS  Google Scholar 

  24. Mamdouh, A., Pearson, J. M., Rayet, M. & Tondeur, F. Large-scale fission-barrier calculations with the ETFSI method. Nucl. Phys. A 644, 389–414 (1998).

    Article  ADS  Google Scholar 

  25. Hulet, E. K. et al. Bimodal symmetrical fission observed in the heaviest elements. Phys. Rev. Lett. 56, 313–316 (1986).

    Article  ADS  CAS  Google Scholar 

  26. Hoffman, D. C. & Hoffman, M. M. Post-fission phenomena. Annu. Rev. Nucl. Sci. 24, 151–207 (1974).

    Article  ADS  CAS  Google Scholar 

  27. Dematte, L., Wagemans, C., Barthelemy, R., Dhondt, P. & Deruytter, A. Fragments' mass and energy characteristics in the spontaneous fission of Pu-236, Pu-238, Pu-240, Pu-242 and Pu-244. Nucl. Phys. A 617, 331–346 (1997).

    Article  ADS  Google Scholar 

  28. Schmidt, K.-H. et al. Relativistic radioactive beams: A new access to nuclear-fission studies. Nucl. Phys. A 665, 221–267 (2000).

    Article  ADS  Google Scholar 

  29. Bolsterli, M., Fiset, E. O., Nix, J. R. & Norton, J. L. New calculation of fission barriers for heavy and superheavy nuclei. Phys. Rev. C 5, 1050–1075 (1972).

    Article  ADS  CAS  Google Scholar 

  30. Krappe, H. J., Nix, J. R. & Sierk, A. J. Unified nuclear potential for heavy-ion elastic scattering, fusion, fission, and ground-state masses and deformations. Phys. Rev. C 20, 992–1013 (1979).

    Article  ADS  CAS  Google Scholar 

  31. Möller, P. & Iwamoto, A. Macroscopic potential-energy surfaces for arbitrarily oriented, deformed heavy-ions. Nucl. Phys. A 575, 381–411 (1994).

    Article  ADS  Google Scholar 

  32. Möller, P. & Randrup, J. New developments in the calculation of β-strength functions. Nucl. Phys. A 514, 1–48 (1990).

    Article  ADS  Google Scholar 

  33. Kratz, K.-L., Bitouzet, J.-P., Thielemann, F.-K., Möller, P. & Pfeiffer, B. Isotopic r-process abundances and nuclear-structure far from stability: implications for the r-process mechanism. Astrophys. J. 403, 216–238 (1993).

    Article  ADS  CAS  Google Scholar 

  34. Kudyaev, G. A., Ostapenko, Yu. B. & Smirenkin, G. N. Thresholds and saddle shapes in symmetric and asymmetric fission in the vicinity of Ra. Sov. J. Nucl. Phys. 45, 951–958 (1987).

    Google Scholar 

  35. Zhao, Y. L. et al. Experimental verification of two deformation paths in the mass division process of actinides. J. Alloys Comp. 271, 327–330 (1998).

    Article  Google Scholar 

  36. Meitner, L. Fission and nuclear shell model. Nature 165, 561 (1950).

    Article  ADS  CAS  Google Scholar 

  37. Hayes, B. Dividing the continent. Am. Sci. 88, 481–485 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The calculations on which the results in this paper are based were carried out on the cluster of 4 Alpha processors at the TANDEM accelerator in JAERI in the winter of 1998–99 and subsequently on the AVALON cluster of 140 Alpha processors at Los Alamos. This research is supported by the US DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Möller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möller, P., Madland, D., Sierk, A. et al. Nuclear fission modes and fragment mass asymmetries in a five-dimensional deformation space. Nature 409, 785–790 (2001). https://doi.org/10.1038/35057204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35057204

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing