Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental violation of a Bell's inequality with efficient detection

Abstract

Local realism is the idea that objects have definite properties whether or not they are measured, and that measurements of these properties are not affected by events taking place sufficiently far away1. Einstein, Podolsky and Rosen2 used these reasonable assumptions to conclude that quantum mechanics is incomplete. Starting in 1965, Bell and others constructed mathematical inequalities whereby experimental tests could distinguish between quantum mechanics and local realistic theories1,3,4,5. Many experiments1,6,7,8,9,10,11,12,13,14,15 have since been done that are consistent with quantum mechanics and inconsistent with local realism. But these conclusions remain the subject of considerable interest and debate, and experiments are still being refined to overcome ‘loopholes’ that might allow a local realistic interpretation. Here we have measured correlations in the classical properties of massive entangled particles (9Be+ ions): these correlations violate a form of Bell's inequality. Our measured value of the appropriate Bell's ‘signal’ is 2.25 ± 0.03, whereas a value of 2 is the maximum allowed by local realistic theories of nature. In contrast to previous measurements with massive particles, this violation of Bell's inequality was obtained by use of a complete set of measurements. Moreover, the high detection efficiency of our apparatus eliminates the so-called ‘detection’ loophole.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of how Bell's inequality experiments work.
Figure 2: Typical data histograms comprising the detection measurements of 20,000 experiments taking a total time of about 20 s.

Similar content being viewed by others

References

  1. Clauser, J. F. & Shimony, A. Bell's theorem: experimental tests and implications. Rep. Prog. Phys. 41, 1883–1927 (1978).

    Article  ADS  Google Scholar 

  2. Einstein, A., Podolsky, B. & Rosen, N. Can quantum-mechanical description of reality be considered complete? Phys. Rev. 47, 777–780 (1935).

    Article  ADS  CAS  Google Scholar 

  3. Bell, J. S. On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1965).

    Article  MathSciNet  Google Scholar 

  4. Bell, J. S. in Foundations of Quantum Mechanics (ed. d'Espagnat, B.) 171–181 (Academic, New York, 1971).

    Google Scholar 

  5. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  6. Freedman, S. J. & Clauser, J. F. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28, 938–941 (1972).

    Article  ADS  CAS  Google Scholar 

  7. Fry, E. S. & Thompson, R. C. Experimental test of local hidden-variable theories. Phys. Rev. Lett. 37, 465–468 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Aspect, A., Grangier, P. & Roger, G. Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: a new violation of Bell's inequalities. Phys. Rev. Lett. 49, 91–94 (1982).

    Article  ADS  Google Scholar 

  9. Aspect, A., Dalibard, J. & Roger, G. Experimental test of Bell's inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982).

    Article  ADS  MathSciNet  Google Scholar 

  10. Ou, Z. Y. & Mandel, L. Violation of Bell's inequality and classical probability in a two-photon correlation experiment. Phys. Rev. Lett. 61, 50–53 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  11. Shih, Y. H. & Alley, C. O. New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

    Article  ADS  CAS  Google Scholar 

  12. Tapster, P. R., Rarity, J. G. & Owens, P. C. M. Violation of Bell's inequality over 4 km of optical fiber. Phys. Rev. Lett. 73, 1923–1926 (1994).

    Article  ADS  CAS  Google Scholar 

  13. Kwiat, P. G., Mattle, K., Weinfurter, H. & Zeilinger, A. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  CAS  Google Scholar 

  14. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Violation of Bell inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Weihs, G. et al. Violation of Bell's inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  16. Aspect, A. Bell's inequality test: more ideal than ever. Nature 398, 189–190 (1999).

    Article  ADS  CAS  Google Scholar 

  17. Gisin, N. & Zbinden, H. Bell inequality and the locality loophole: active versus passive switches. Phys. Lett. A 264, 103–107 (1999).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Lo, T. K. & Shimony, A. Proposed molecular test of local hidden-variable theories. Phys. Rev. A 23, 3003–3012 (1981).

    Article  ADS  CAS  Google Scholar 

  19. Kwiat, P. G., Eberhard, P. H., Steinberg, A. M. & Chiao, R. Y. Proposal for a loophole-free Bell inequality experiment. Phys. Rev. A 49, 3209–3220 (1994).

    Article  ADS  CAS  Google Scholar 

  20. Huelga, S. F., Ferrero, M. & Santos, E. Loophole-free test of the Bell inequality. Phys. Rev. A 51, 5008–5011 (1995).

    Article  ADS  CAS  Google Scholar 

  21. Fry, E. S., Walther, T. & Li, S. Proposal for a loophole free test of the Bell inequalities. Phys. Rev. A 52, 4381–4395 (1995).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  22. Freyberger, M., Aravind, P. K., Horne, M. A. & Shimony, A. Proposed test of Bell's inequality without a detection loophole by using entangled Rydberg atoms. Phys. Rev. A 53, 1232–1244 (1996).

    Article  ADS  CAS  Google Scholar 

  23. Brif, C. & Mann, A. Testing Bell's inequality with two-level atoms via population spectroscopy. Europhys. Lett. 49, 1–7 (2000).

    Article  ADS  CAS  Google Scholar 

  24. Beige, A., Munro, W. J. & Knight, P. L. A Bell's inequality test with entangled atoms. Phys. Rev. A 62, 052102-1–052102-9 (2000).

    Article  ADS  Google Scholar 

  25. Lamehi-Rachti, M. & Mittig, W. Quantum mechanics and hidden variables: a test of Bell's inequality by the measurement of the spin correlation in low-energy proton–proton scattering. Phys. Rev. D 14, 2543–2555 (1976).

    Article  ADS  CAS  Google Scholar 

  26. Hagley, E. et al. Generation of Einstein-Podolsky-Rosen pairs of atoms. Phys. Rev. Lett. 79, 1–5 (1997).

    Article  ADS  CAS  Google Scholar 

  27. Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000).

    Article  ADS  CAS  Google Scholar 

  28. Feynman, R. P., Vernon, F. L. & Hellwarth, R. W. Geometrical representation of the Schrödinger equation for solving maser problems. J. Appl. Phys. 28, 49–52 (1957).

    Article  ADS  CAS  Google Scholar 

  29. Richter, T. Cooperative resonance fluorescence from two atoms experiencing different driving fields. Optica Acta 30, 1769–1780 (1983).

    Article  ADS  CAS  Google Scholar 

  30. Eichmann, U. et al. Young's interference experiment with light scattered from two atoms. Phys. Rev. Lett. 70, 2359–2362 (1993).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Ben-Kish, J. Bollinger, J. Britton, N. Gisin, P. Knight, P. Kwiat and I. Percival for useful discussions and comments on the manuscript. This work was supported by the US National Security Agency (NSA) and the Advanced Research and Development Activity (ARDA), the US Office of Naval Research, and the US Army Research Office. This paper is a contribution of the National Institute of Standards and Technology and is not subject to US copyright.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Rowe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rowe, M., Kielpinski, D., Meyer, V. et al. Experimental violation of a Bell's inequality with efficient detection. Nature 409, 791–794 (2001). https://doi.org/10.1038/35057215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35057215

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing