Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A model for SOS-lesion-targeted mutations in Escherichia coli

Abstract

The UmuD′2C protein complex (Escherichia coli pol V)1,2,3 is a low-fidelity DNA polymerase (pol) that copies damaged DNA in the presence of RecA, single-stranded-DNA binding protein (SSB) and the β,γ-processivity complex of E. coli pol III (ref. 4). Here we propose a model to explain SOS-lesion-targeted mutagenesis, assigning specific biochemical functions for each protein during translesion synthesis. (SOS lesion-targeted mutagenesis occurs when pol V is induced as part of the SOS response to DNA damage and incorrectly incorporates nucleotides opposite template lesions.) Pol V plus SSB catalyses RecA filament disassembly in the 3′ to 5′ direction on the template, ahead of the polymerase, in a reaction that does not involve ATP hydrolysis. Concurrent ATP-hydrolysis-driven filament disassembly in the 5′ to 3′ direction results in a bidirectional stripping of RecA from the template strand. The bidirectional collapse of the RecA filament restricts DNA synthesis by pol V to template sites that are proximal to the lesion, thereby minimizing the occurrence of untargeted mutations at undamaged template sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of RecA, SSB and β,γ-complex on replication of lesion-containing and natural primer/template (p/t) DNA.
Figure 2: Dependence of pol V-catalysed TLS and total DNA synthesis on RecA, SSB and β,γ-complex. a, RecA protein concentration was varied while maintaining constant concentrations of SSB (400 nM), β- (400 nM) and γ-complex (100 nM).
Figure 3: Nuclease protection analysis of pol V plus SSB 3′ to 5′ disassembly of a stabilized RecA filament.
Figure 4: Cowcatcher model for TLS by the pol V mutasome.

Similar content being viewed by others

References

  1. Tang, M. et al. Biochemical basis of SOS mutagenesis in Escherichia coli: reconstitution of in vitro lesion bypass dependent on the UmuD 2′C mutagenic complex and RecA protein. Proc. Natl Acad. Sci. USA 95, 9755–9760 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tang, M. et al. UmuD′2C is an error-prone DNA polymerase, Escherichia coli pol V. Proc. Natl Acad. Sci. USA 96, 8919–8924 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reuven, N. B., Arad, G., Maor-Shoshani, A. & Livneh, Z. The mutagenic protein UmuC is a DNA polymerase activated by UmuD′, RecA, and SSB and is specialized for translesion replication. J. Biol. Chem. 274, 31763–31766 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  4. Tang, M. et al. Roles of E. coli DNA polymerases IV and V in lesion-targeted and untargeted mutagenesis. Nature 404, 1014–1018 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Friedberg, E. C., Walker, G. C. & Siede, W. in DNA Repair and Mutagenesis 1 407– 522 (ASM, Washington, 1995).

    Google Scholar 

  6. Goodman, M. F. & Tippin, B. The expanding polymerase universe. Nature Rev. Mol. Cell Biol. 1, 101– 109 (2000).

    Article  CAS  Google Scholar 

  7. Echols, H. & Goodman, M. F. Mutation induced by DNA damage: A many protein affair. Mutat. Res. 236, 301–311 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage λ. Microbiol. Mol. Biol. Rev. 63, 751– 813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Bloom, L. B. et al. Dynamics of loading the β sliding clamp of DNA polymerase III onto DNA. J. Biol. Chem. 271, 30699– 30708 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Bailone, A., Sommer, S., Knezevic, J., Dutreix, M. & Devoret, R. A RecA protein mutant deficient in its interaction with the UmuDC complex. Biochemie 73, 479– 484 (1991).

    Article  CAS  Google Scholar 

  11. Kong, X.-P., Onrust, R., O'Donnell, M. & Kuriyan, J. Three-dimensional structure of the β subunit of E. coli DNA polymerase III holoenzyme: a sliding DNA clamp. Cell 69, 425–437 (1992).

    Article  CAS  PubMed  Google Scholar 

  12. Shan, Q., Bork, J. M., Webb, B. L., Inman, R. B. & Cox, M. M. RecA protein filaments: end-dependent dissociation from ssDNA and stabilization by RecO and RecR proteins. J. Mol. Biol. 265, 519–540 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  13. Sommer, S., Bailone, A. & Devoret, R. The appearance of the UmuD′C protein complex in Escherichia coli switches repair from homologous recombination to SOS mutagenesis. Mol. Microbiol. 10, 963– 971 (1993).

    Article  CAS  PubMed  Google Scholar 

  14. Lindahl, T. & Wood, R. D. Quality control by DNA repair. Science 286, 1897–1905 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  15. Goodman, M. F. Coping with replication ‘train wrecks’ in Escherichia coli using pol V, pol II, and RecA proteins. Trends Biochem. Sci. 25, 189–195 ( 2000).

    Article  CAS  PubMed  Google Scholar 

  16. Lao, Y., Gomes, X. V., Ren, Y., Taylor, J. S. & Wold, M. S. Replication protein A interactions with DNA. III. Molecular basis of recognition of damaged DNA. Biochemistry 39, 850–859 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Sutton, M. D., Opperman, T. & Walker, G. C. The Eschericia coli SOS mutagenesis proteins UmuD and UmuD′ interact physically with the replicative DNA polymerase. Proc. Natl Acad. Sci. USA 96, 12373– 12378 (1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lovett, S. T. & Kolodner, R. D. Identification and purification of a single-stranded-DNA-specific exonuclease encoded by RecJ gene of Escherichia coli. Proc. Natl Acad. Sci. USA 86, 2627–2631 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Creighton, S., Bloom, L. B. & Goodman, M. F. in Methods Enzymol. (ed. Campbell, J. L.) 232–256 (Academic, San Diego, 1995 ).

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants to M.F.G. and M.O. P.P. was supported on an NIH-NIA postdoctoral training grant, and J.G.B. was supported on a National Institute of Dental and Craniofacial Research predoctoral training grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron F. Goodman.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, P., Bertram, J., O'Donnell, M. et al. A model for SOS-lesion-targeted mutations in Escherichia coli. Nature 409, 366–370 (2001). https://doi.org/10.1038/35053116

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053116

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing