Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Processive translocation and DNA unwinding by individual RecBCD enzyme molecules

Abstract

RecBCD enzyme is a processive DNA helicase1 and nuclease2 that participates in the repair of chromosomal DNA through homologous recombination3,4. We have visualized directly the movement of individual RecBCD enzymes on single molecules of double-stranded DNA (dsDNA). Detection involves the optical trapping of solitary, fluorescently tagged dsDNA molecules that are attached to polystyrene beads, and their visualization by fluorescence microscopy5,6. Both helicase translocation and DNA unwinding are monitored by the displacement of fluorescent dye from the DNA by the enzyme7. Here we show that unwinding is both continuous and processive, occurring at a maximum rate of 972 ± 172 base pairs per second (0.30 µm s-1), with as many as 42,300 base pairs of dsDNA unwound by a single RecBCD enzyme molecule. The mean behaviour of the individual RecBCD enzyme molecules corresponds to that observed in bulk solution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Visualization of DNA helicase action on individual DNA molecules.
Figure 2: Unwinding of a DNA molecule by RecBCD enzyme.
Figure 3: Both the rate and processivity for dsDNA unwinding by individual RecBCD enzyme molecules may vary, but their averages fall within ranges observed for bulk solution.

Similar content being viewed by others

References

  1. Roman, L. J., Eggleston, A. K. & Kowalczykowski, S. C. Processivity of the DNA helicase activity of Escherichia coli recBCD enzyme. J. Biol. Chem. 267, 4207–4214 (1992).

    CAS  PubMed  Google Scholar 

  2. Arnold, D. A. & Kowalczykowski, S. C. in Encyclopedia of Life Sciences [online] (Nature Publishing Group, London, 1999) 〈http:///www.els.net〉.

    Google Scholar 

  3. Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D. & Rehrauer, W. M. Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuzminov, A. Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol. Mol. Biol. Rev. 63, 751 –813 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Perkins, T. T., Smith, D. E. & Chu, S. Direct observation of tube-like motion of a single polymer chain. Science 264, 819– 822 (1994).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Brewer, L. R., Corzett, M. & Balhorn, R. Protamine-induced condensation and decondensation of the same DNA molecule. Science 286, 120– 123 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Eggleston, A. K., Rahim, N. A. & Kowalczykowski, S. C. A helicase assay based on the displacement of fluorescent, nucleic acid-binding ligands. Nucleic Acids Res. 24 , 1179–1186 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ganesan, S. & Smith, G. R. Strand-specific binding to duplex DNA ends by the subunits of Escherichia coli recBCD enzyme. J. Mol. Biol. 229, 67–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  9. Bennink, M. L. et al. Single-molecule manipulation of double-stranded DNA using optical tweezers: interaction studies of DNA with RecA and YOYO-1. Cytometry 36, 200–208 ( 1999).

    Article  CAS  PubMed  Google Scholar 

  10. Taylor, A. F. & Smith, G. R. Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J. Mol. Biol. 185, 431–443 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. Roman, L. J. & Kowalczykowski, S. C. Characterization of the helicase activity of the Escherichia coli RecBCD enzyme using a novel helicase assay. Biochemistry 28, 2863– 2873 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Eggleston, A. K. & Kowalczykowski, S. C. The mutant recBCD enzyme, recB2109CD enzyme, has helicase activity but does not promote efficient joint molecule formation in vitro. J. Mol. Biol. 231, 621–633 (1993).

    Article  CAS  PubMed  Google Scholar 

  13. Taylor, A. & Smith, G. R. Unwinding and rewinding of DNA by the recBC enzyme. Cell 22, 447– 457 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. Xue, Q. F. & Yeung, E. S. Differences in the chemical reactivity of individual molecules of an enzyme. Nature 373, 681–683 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Wuite, G. J. L., Smith, S. B., Young, M., Keller, D. & Bustamante, C. Single-molecule studies of the effect of template tension on T7 DNA polymerase activity. Nature 404, 103–106 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Roman, L. J. & Kowalczykowski, S. C. Characterization of the adenosinetriphosphatase activity of the Escherichia coli RecBCD enzyme: Relationship of ATP hydrolysis to the unwinding of duplex DNA. Biochemistry 28, 2873–2881 (1989).

    Article  CAS  PubMed  Google Scholar 

  17. Bianco, P. R. & Kowalczykowski, S. C. Step size measurements on the translocation mechanism of the RecBC DNA helicase. Nature 405, 368–372 ( 2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zaitsev, E. N. & Kowalczykowski, S. C. Binding of double-stranded DNA by Escherichia coli RecA protein monitored by a fluorescent dye displacement assay. Nucleic Acids Res. 26, 650–654 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Anderson, D. G. & Kowalczykowski, S. C. SSB protein controls RecBCD enzyme nuclease activity during unwinding: a new role for looped intermediates. J. Mol. Biol. 282, 275–285 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Chan and J. Lengyel for assistance with measurements, and the following people for their comments on the manuscript: N. Handa, J. Kleiman, A. Mazin, J. New, E. Seitz, M. Spies, T. Sugiyama and Y. Wu. This work was supported by an NIH Grant to S.C.K. and a DOE Center of Excellence for Laser Applications in Medicine Grant to Y.Y. and R.J.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen C. Kowalczykowski.

Supplementary information

41586_2001_BF35053131_MOESM1_ESM.mov

This movie shows unwinding of a single molecule of lambda DNA by a simgle RecBCD enzyme at 37°C in the presence of 1mM ATP. (MOV 3468 kb)

41586_2001_BF35053131_MOESM2_ESM.mov

This movie shows unwinding of a single molecule of lambda DNA by a simgle RecBCD enzyme at 23°C in the presence of 1mM ATP. (MOV 3622 kb)

41586_2001_BF35053131_MOESM3_ESM.mov

This movie shows unwinding of a single molecule of lambda DNA by a simgle RecBCD enzyme at 23°C in the presence of 250μM ATP. (MOV 3588 kb)

This movie shows unwinding of a single molecule of lambda DNA in the absence of cofactor at 23°C. (MOV 4158 kb)

41586_2001_BF35053131_MOESM5_ESM.jpg

A graph showing the amount of active protein in the RecBCD enzyme prepatation used in the experiments described. (JPG 99 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bianco, P., Brewer, L., Corzett, M. et al. Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409, 374–378 (2001). https://doi.org/10.1038/35053131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35053131

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing