Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of growth and collapse of a Bose–Einstein condensate with attractive interactions

Abstract

Quantum theory predicts that Bose–Einstein condensation of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid1. When confined to a trap, however, such a condensate can form2, provided that its occupation number does not exceed a limiting value3,4. The stability limit is determined by a balance between the self-attractive forces and a repulsion that arises from position–momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse5,6,7,8. Growth of the condensate is therefore punctuated by intermittent collapses9,10 that are triggered by either macroscopic quantum tunnelling or thermal fluctuation. Previous observations of growth and collapse dynamics have been hampered by the stochastic nature of these mechanisms. Here we report direct observations of the growth and subsequent collapse of a 7Li condensate with attractive interactions, using phase-contrast imaging. The success of the measurement lies in our ability to reduce the stochasticity in the dynamics by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two-photon molecular association technique.
Figure 2: Energy selectivity of the two-photon light pulse.
Figure 3: Condensate growth and collapse dynamics.
Figure 4: Phase-contrast images.
Figure 5: Simulation of condensate dynamics.

Similar content being viewed by others

References

  1. Stoof, H. T. C. Atomic Bose gas with a negative scattering length. Phys. Rev. A 49, 3824–3830 (1994).

    Article  ADS  CAS  Google Scholar 

  2. Bradley, C. C., Sackett, C. A., Tollett, J. J. & Hulet, R. G. Evidence of Bose-Einstein condensation in an atomic gas with attractive interactions. Phys. Rev. Lett. 75, 1687–1690 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Ruprecht, P. A., Holland, M. J., Burnett, K. & Edwards, M. Time-dependent solution of the nonlinear Schrodinger equation for Bose-condensed trapped neutral atoms. Phys. Rev. A 51, 4704–4711 (1995).

    Article  ADS  CAS  Google Scholar 

  4. Bradley, C. C., Sackett, C. A. & Hulet, R. G. Bose-Einstein condensation of lithium: observation of limited condensate number. Phys. Rev. Lett. 78, 985–989 (1997).

    Article  ADS  CAS  Google Scholar 

  5. Kagan, Y., Shlyapnikov, G. V. & Walraven, J. T. M. Bose-Einstein condensation in trapped atomic gases. Phys. Rev. Lett. 76, 2670–2673 (1996).

    Article  ADS  CAS  Google Scholar 

  6. Shuryak, E. V. Bose condensate made of atoms with attractive interaction is metastable. Phys. Rev. A 54, 3151–3154 (1996).

    Article  ADS  CAS  Google Scholar 

  7. Stoof, H. T. C. Macroscopic quantum tunneling of a Bose condensate. J. Stat. Phys. 87, 1353–1366 (1997).

    Article  ADS  Google Scholar 

  8. Ueda, M. & Leggett, A. J. Macroscopic quantum tunneling of a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 80, 1576–1579 (1998).

    Article  ADS  CAS  Google Scholar 

  9. Sackett, C. A., Stoof, H. T. C. & Hulet, R. G. Growth and collapse of a Bose condensate with attractive interactions. Phys. Rev. Lett. 80, 2031–2034 (1998).

    Article  ADS  CAS  Google Scholar 

  10. Kagan, Y., Muryshev, A. E. & Shlyapnikov, G. V. Collapse and Bose-Einstein condensation in a trapped Bose gas with negative scattering length. Phys. Rev. Lett. 81, 933–937 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Houbiers, M. & Stoof, H. T. C. Stability of Bose condensed atomic 7Li. Phys. Rev. A 54, 5055 (1996).

    Article  ADS  CAS  Google Scholar 

  12. Chandrasekhar, S. An Introduction to the Study of Stellar Structure (Dover, New York, 1957).

    MATH  Google Scholar 

  13. Sackett, C. A., Gerton, J. M., Welling, M. & Hulet, R. G. Measurements of collective collapse in a Bose-Einstein condensate with attractive interactions. Phys. Rev. Lett. 82, 876–879 (1999).

    Article  ADS  CAS  Google Scholar 

  14. Andrews, M. R. et al. Direct, nondestructive observation of a Bose condensate. Science 273, 84–87 (1996).

    Article  ADS  CAS  Google Scholar 

  15. Sackett, C. A., Bradley, C. C., Welling, M. & Hulet, R. G. Bose-Einstein condensation of lithium. Appl. Phys. B 65, 433–440 (1997).

    Article  ADS  CAS  Google Scholar 

  16. Cornish, S. L., Claussen, N. R., Roberts, J. L., Cornell, E. A. & Wieman, C. E. Stable 85Rb Bose-Einstein condensates with widely tunable interactions. Phys. Rev. Lett. 85, 1795–1798 (2000).

    Article  ADS  CAS  Google Scholar 

  17. Abraham, E. R. I., McAlexander, W. I., Sackett, C. A. & Hulet, R. G. Spectroscopic determination of the s-wave scattering length of lithium. Phys. Rev. Lett. 74, 1315–1318 (1995).

    Article  ADS  CAS  Google Scholar 

  18. Wynar, R., Freeland, R. S., Han, D. J., Ryu, C. & Heinzen, D. J. Molecules in a Bose-Einstein condensate. Science 287, 1016–1019 (2000).

    Article  ADS  CAS  Google Scholar 

  19. Miesner, H.-J. et al. Bosonic stimulation in the formation of a Bose-Einstein condensate. Science 279, 1005–1007 (1998).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.A. Sackett for help with the quantum Boltzmann simulation. This work was supported by the US National Science Foundation, the National Aeronautics and Space Administration, the Office of Naval Research and the Welch Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall G. Hulet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gerton, J., Strekalov, D., Prodan, I. et al. Direct observation of growth and collapse of a Bose–Einstein condensate with attractive interactions. Nature 408, 692–695 (2000). https://doi.org/10.1038/35047030

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047030

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing