Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The HIC signalling pathway links CO2 perception to stomatal development

Abstract

Stomatal pores on the leaf surface control both the uptake of CO2 for photosynthesis and the loss of water during transpiration. Since the industrial revolution, decreases in stomatal numbers in parallel with increases in atmospheric CO2 concentration have provided evidence of plant responses to changes in CO2 levels caused by human activity1,2. This inverse correlation between stomatal density and CO2 concentration also holds for fossil material from the past 400 million years3 and has provided clues to the causes of global extinction events4. Here we report the identification of the Arabidopsis gene HIC (for high carbon dioxide), which encodes a negative regulator of stomatal development that responds to CO2 concentration. This gene encodes a putative 3-keto acyl coenzyme A synthase—an enzyme involved in the synthesis of very-long-chain fatty acids5. Mutant hic plants exhibit up to a 42% increase in stomatal density in response to a doubling of CO2. Our results identify a gene involved in the signal transduction pathway responsible for controlling stomatal numbers at elevated CO2.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: GUS expression in hic Arabidopsis plants is specific to guard cells.
Figure 2: The GUS gene co-segregates with the elevated CO2 stomatal index phenotype.
Figure 3: HIC is similar to Arabidopsis 3-keto acyl CoA synthases.

References

  1. Woodward, F. I. Stomatal numbers are sensitive to CO2 increases from pre-industrial levels. Nature 327, 617–618 (1987).

    Article  ADS  Google Scholar 

  2. Woodward, F. I. & Kelly, C. K. The influence of CO2 concentration on stomatal density. New Phytol. 131, 311–327 (1995).

    Article  Google Scholar 

  3. McElwain, J. C. & Chaloner, W. G. Stomatal density and index of fossil plants track atmospheric carbon-dioxide in the paleozoic. Ann. Bot. 76, 389–395 (1995).

    Article  Google Scholar 

  4. McElwain, J. C., Beerling, D. J. & Woodward, F. I. Fossil plants and global warming at the Triassic–Jurassic boundary. Science 285, 1386–1390 (1999).

    Article  CAS  Google Scholar 

  5. Post-Beittenmiller, D. Biochemistry and molecular biology of wax production in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 405–430 (1996).

    Article  CAS  Google Scholar 

  6. Topping, J. F., Wei, W. B. & Lindsey, K. Functional tagging of regulatory elements in the plant genome. Development 112, 1009–1019 (1991).

    CAS  PubMed  Google Scholar 

  7. Goddijn, O. J. M., Lindsey, K., van der Lee, F. M., Klap, J. C. & Sijmons, P. C. Differential gene-expression in nematode-induced feeding structures of transgenic plants harbouring GUSA fusion constructs. Plant J. 4, 863–873 (1993).

    Article  CAS  Google Scholar 

  8. Yang, M. & Sack, F. D. The too many mouths and four lips mutations affect stomatal production in Arabidopsis. Plant Cell 7, 2227–2239 (1995).

    Article  CAS  Google Scholar 

  9. Berger, D. & Altman, T. A subtilisin-like serine protease involved in the regulation of stomatal density and distribution in Arabidopsis thaliana. Genes Dev. 14, 1119–1131 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Todd, J., Post-Beittenmiller, D. & Jaworski, J. G. KCS1 encodes a fatty acid elongase 3-ketoacyl-CoA synthase affecting wax biosynthesis in Arabidopsis thaliana. Plant J. 17, 119–130 (1999).

    Article  CAS  Google Scholar 

  11. Lassner, M. W., Lardizabal, K. & Metz, J. G. A jojoba β-keto-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8, 281–292 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Zeiger, E. & Stebbins, L. Developmental genetics in barley: a mutant for stomatal development. Am. J. Bot. 59, 143–148 (1972).

    Article  Google Scholar 

  13. Jenks, M. A., Tuttle, H. A., Eigenbrode, S. D. & Feldmann, K. A. Leaf epicuticular waxes of the eceriferum mutants in Arabidopsis. Plant Physiol. 108, 369–377, (1995).

    Article  CAS  Google Scholar 

  14. Post-Beittenmiller, D. The cloned Eceriferum genes of Arabidopsis and the corresponding Glossy genes in maize. Plant Physiol. Bioch. 36, 157–166 (1998).

    Article  CAS  Google Scholar 

  15. Lolle, S. J., Cheung, A. Y. & Sussex, I. M. fiddlehead: an Arabidopsis mutant constitutively expressing an organ fusion program that involves interactions between epidermal cells. Dev. Biol. 152, 383–392 (1992)

    Article  CAS  Google Scholar 

  16. Lolle, S. J. et al. Developmental regulation of cell interactions in the Arabidopsis fiddlehead–1 mutant: a role for the epidermal cell wall and cuticle. Dev. Biol. 189, 311–321 (1997).

    Article  CAS  Google Scholar 

  17. Yephremov, A. et al. Characterization of the FIDDLEHEAD gene of Arabidopsis reveals a link between adhesion response and cell differentiation in the epidermis. Plant Cell 11, 2187–2201 (1999).

    Article  CAS  Google Scholar 

  18. Larkin, J. C., Marks, M. D., Nadeau, J. & Sack, F. Epidermal cell fate and patterning in leaves. Plant Cell 9, 1109–1120 (1997).

    Article  CAS  Google Scholar 

  19. Bünning, E. & Sagromsky, H. Die Bildung des Spaltöffnungsmusters in der Blattepidermis. Z. Naturforsch. 3b, 203–216 (1948).

    Article  Google Scholar 

  20. Korn, R. W. Evidence in dicots for stomatal patterning by inhibition. Int. J. Plant Sci. 154, 367–377 (1993).

    Article  Google Scholar 

  21. Neighbour, E. A. et al. A small-scale controlled environment chamber for the investigation of effects of pollutant gases on plants growing at cool or sub-zero temperature. Environ. Pollution 64, 155–168 (1990).

    Article  CAS  Google Scholar 

  22. Jefferson, R. A. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5, 387–405 (1987).

    Article  CAS  Google Scholar 

  23. Beckman, A. A. & Engler, A. A. An easy technique for the clearing of histochemically stained plant tissue. Plant Mol. Biol. Rep. 12, 37–42 (1994).

    Article  Google Scholar 

  24. Salisbury, E. J. On the causes and ecological significance of stomatal frequency with special reference to woodland flora. Phil. Trans. R. Soc. Lond. B 216, 1–65 (1927).

    Article  ADS  Google Scholar 

  25. Weyers, J. D. B. & Johansen, L. G. Accurate estimation of stomatal aperture from silicone rubber impressions. New Phytol. 101, 109–115 (1985).

    Article  Google Scholar 

  26. Poole, I., Weyers, J. D. B., Lawson, T. & Raven, J. A. Variations in stomatal density and index: implications for paleoclimatic reconstructions. Plant Cell Environ. 19, 705–712 (1996).

    Article  Google Scholar 

  27. Barthels, N. et al. Regulatory sequences of Arabidopsis drive reporter gene expression on nematode feeding structures. Plant Cell 9, 2119–2134 (1997).

    Article  CAS  Google Scholar 

  28. Lin, X. Y. et al. Sequence and analysis of chromosome 2 of the plant Arabidopsis thaliana. Nature 402, 761–765 (1999).

    Article  ADS  CAS  Google Scholar 

  29. Gleave, A. P. A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol. Biol. 20, 1203–1207 (1992).

    Article  CAS  Google Scholar 

  30. Valvekens, D., Van Montagu, M. & Van Lijsebettens, M. Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl Acad. Sci. USA 85, 5536–5540 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the assistance of J. Proctor, J. Balk, A. G. Moir and P. Tripathi with this work. We would like to thank K. Lindsey and S. Bright for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair M. Hetherington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gray, J., Holroyd, G., van der Lee, F. et al. The HIC signalling pathway links CO2 perception to stomatal development. Nature 408, 713–716 (2000). https://doi.org/10.1038/35047071

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047071

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing