Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct observation of molecular cooperativity near the glass transition

Abstract

The increasingly sluggish response of a supercooled liquid as it nears its glass transition1 (for example, refrigerated honey) is prototypical of glassy dynamics found in proteins, neural networks and superconductors. The notion that molecules rearrange cooperatively has long been postulated2 to explain diverging relaxation times and broadened (non-exponential) response functions near the glass transition. Recently, cooperativity was observed and analysed in colloid glasses3 and in simulations of binary liquids well above the glass transition4. But nanometre-scale studies of cooperativity at the molecular glass transition are lacking5. Important issues to be resolved include the precise form of the cooperativity and its length scale6, and whether the broadened response is intrinsic to individual cooperative regions, or arises only from heterogeneity7,8,9 in an ensemble of such regions. Here we describe direct observations of molecular cooperativity near the glass transition in polyvinylacetate (PVAc), using nanometre-scale probing of dielectric fluctuations. Molecular clusters switched spontaneously among two to four distinct configurations, producing random telegraph noise. Our analysis of these noise signals and their power spectra reveals that individual clusters exhibit transient dynamical heterogeneity and non-exponential kinetics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heterogeneous scenario.
Figure 2: Noise spectra for PVAc at T = 299 K.
Figure 3: Lifetime of heterogeneities.
Figure 4: Time series of polarization.
Figure 5: RTS distributions.

Similar content being viewed by others

References

  1. Angell, C. A. Formation of glasses from liquids and biopolymers. Science 267, 1924–1939 (1995).

    ADS  CAS  PubMed  Google Scholar 

  2. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    Article  ADS  CAS  Google Scholar 

  3. Weeks, E. R., Crocker, J. L., Levitt, A. C., Schofield, A. & Weitz, D. A. Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287, 627–629 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Bennemann, C., Donati, C., Baschnagel, J. & Glotzer, S. C. Growing range of correlated motion in a polymer melt on cooling towards the glass transition. Nature 399, 246–249 (1999).

    Article  ADS  CAS  Google Scholar 

  5. Binder, K., Baschnagel, J., Kob, W. & Paul, W. Glass physics: still not transparent. Phys. World 12, 54 (1999).

    Article  Google Scholar 

  6. Tracht, U. et al. Length scale of dynamic heterogeneities at the glass transition determined by multidimensional nuclear magnetic resonance. Phys. Rev. Lett. 81, 2728–2731 (1998).

    Article  ADS  Google Scholar 

  7. Schiener, B., Bohmer, R., Loidl, A. & Chamberlin, R. V. Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 274, 752–754 (1996).

    Article  ADS  CAS  Google Scholar 

  8. Bohmer, R. et al. Nature of the nonexponential primary relaxation in structural glasses probed by dynamically selective experiments. J. Non-Cryst. Solids 235, 1–8 (1998).

    Article  ADS  Google Scholar 

  9. Ediger, M. D. Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, (in the press).

  10. Dixon, P. K., Wu, L., Nagel, S. R., Williams, B. D. & Carini, J. P. Scaling in the relaxation of a supercooled liquid. Phys. Rev. Lett. 65, 1108–1111 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Arbe, A., Colmenero, J., Monkenbusch, M. & Richter, D. Dynamics of glass forming polymers: “homogeneous” vs. “heterogeneous” scenario. Phys. Rev. Lett. 81, 590–593 (1998).

    Article  ADS  CAS  Google Scholar 

  12. Grigera, T. S. & Israeloff, N. E. Observation of fluctuation-dissipation-theorem violations in a structural glass. Phys. Rev. Lett. 83, 5038–5041 (1999).

    Article  ADS  CAS  Google Scholar 

  13. Martin, Y., Abraham, D. W. & Wickramasinghe, H. K. High-resolution capacitance measurement and potentiometry by force microscopy. Appl. Phys. Lett. 52, 1103–1105 (1988).

    Article  ADS  Google Scholar 

  14. Walther, L. E., Israeloff, N. E., Vidal Russell, E. & Alvarez Gomariz, H. Mesoscopic scale dielectric relaxation at the glass transition. Phys. Rev. B 57, R15112–R15115 (1998).

    Article  ADS  CAS  Google Scholar 

  15. Vidal Russell, E., Walther, L. E., Israeloff, N. E. & Alvarez Gomariz, H. Nanometer scale dielectric fluctuations at the glass transition. Phys. Rev. Lett. 81, 1461–1464 (1998).

    Article  ADS  Google Scholar 

  16. Walther, L. E., Vidal Russell, E., Israeloff, N. E. & Alvarez Gomariz, H. Atomic force measurement of low frequency dielectric noise. Appl. Phys. Lett. 72, 3223–3226 (1998).

    Article  ADS  CAS  Google Scholar 

  17. Albrecht, T. R., Grütter, P., Horne, D. & Rugar, D. Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668–673 (1991).

    Article  ADS  Google Scholar 

  18. Forrest, J. A., Dalnoki-Veress, K., Stevens, J. R. & Dutcher, J. R. Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. McCrum, N. G., Read, B. E. & Williams, G. Anelastic And Dielectric Effects In Polymeric Solids 302–305 (Dover, New York, 1991).

    Google Scholar 

  20. Tracht, U., Heuer, A., Spiess, H. W. Geometry of reorientational dynamics in supercooled poly(vinyl acetate) studied by 2D NMR echo experiments. J. Phys. Chem. 111, 3720–3727 (1999).

    Article  CAS  Google Scholar 

  21. Xia, X. & Wolynes, P. G. Fragilities of liquids predicted from the random first order transition theory of glasses. Proc. Natl Acad. Sci. USA 97, 2990–2994 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang, J. & Wolynes, P. Intermittency of single molecule reaction dynamics in fluctuating environments. Phys. Rev. Lett. 74, 4317–4320 (1995).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the NSF Division of Materials Research, and the Petroleum Research Fund administered by the American Chemical Society. We thank M. D. Ediger for helpful discussions and K. Sinnathamby for assistance.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vidal Russell, E., Israeloff, N. Direct observation of molecular cooperativity near the glass transition. Nature 408, 695–698 (2000). https://doi.org/10.1038/35047037

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35047037

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing