Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical evidence for terrestrial ecosystems 2.6 billion years ago

Abstract

Microorganisms have flourished in the oceans since at least 3.8 billion years (3.8 Gyr) ago1,2, but it is not at present clear when they first colonized the land. Organic matter in some Au/U-rich conglomerates and ancient soils of 2.3–2.7 Gyr age has been suggested as remnants of terrestrial organisms3,4,5. Some 2.7-Gyr-old stromatolites have also been suggested as structures created by terrestrial organisms6,7. However, it has been disputed whether this organic matter is indigenous or exogenic, and whether these stromatolites formed in marine or fresh water. Consequently, the oldest undisputed remnants of terrestrial organisms are currently the 1.2-Gyr-old microfossils from Arizona, USA8. Unusually carbonaceous ancient soils—palaeosols—have been found in the Mpumalanga Province (Eastern Transvaal) of South Africa9. Here we report the occurrences, elemental ratios (C, H, N, P) and isotopic compositions of this organic matter and its host rocks. These data show that the organic matter very probably represents remnants of microbial mats that developed on the soil surface between 2.6 and 2.7 Gyr ago. This places the development of terrestrial biomass more than 1.4 billion years earlier than previously reported.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A simplified map of Mpumalanga Province, South Africa.
Figure 2: Mineralogical and chemical characteristics of the 17-m palaeosol section at Schagen (see Methods for details).
Figure 3: Concentration relationships between organic carbon and phosphorus, and organic carbon and nitrogen.
Figure 4: Association of organic matter with clays in the palaeosol.

Similar content being viewed by others

References

  1. Mojzsis, S. J. et al. Evidence for life on Earth before 3,800 million years ago. Nature 384, 55–59 (1996).

    Article  CAS  Google Scholar 

  2. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from west Greenland. Science 283, 674–676 (1999).

    Article  CAS  Google Scholar 

  3. Hallbauer, D. K. & van Warmelo, K. T. Fossilized plants in thucholite from Precambrian rocks of the Witwatersrand, South Africa. Precambr. Res. 1, 199–212 (1974).

    Article  Google Scholar 

  4. Gay, A. L. & Grandstaff, D. E. Chemistry and mineralogy of Precambrian paleosols at Elliot Lake, Ontario, Canada. Precambr. Res. 12, 349–373 (1980).

    Article  CAS  Google Scholar 

  5. Mossman, D. J. & Fallow, C. E. G. in Early Organic Evolution: Implications for Mineral and Energy Resources (eds Schidlowski, M. et al.) 67–75 (Springer, Berlin, 1992).

    Book  Google Scholar 

  6. Buck, S. G. Stromatolite and ooid deposits within the fluvial and lacustrine sediments of the Precambrian Ventersdorp supergroup of South Africa. Precambr. Res. 12, 311–330 (1980).

    Article  Google Scholar 

  7. Buick, R. The antiquity of oxygen photosynthesis: Evidence from stromatolites in sulfate-deficient Archean lakes. Science 255, 74–77 (1992).

    Article  CAS  Google Scholar 

  8. Horodyski, R. J. & Knauth, L. P. Life on land in the Precambrian. Science 263, 494–498 (1994).

    Article  CAS  Google Scholar 

  9. Martini, J. E. J. A Late Archean–Paleoproterozoic (2.6 Ga) paleosol on ultramafics in the Eastern Transvaal, South Africa. Precambr. Res. 67, 159–180 (1994).

    Article  CAS  Google Scholar 

  10. Wright, V. P. in Quantitative Diagenesis: Recent Developments and Applications to Reservoir Geology (eds Parker, A. & Sellwood, B. W.) 95–123 (Kluwer Academic, Dordrecht, 1994).

    Book  Google Scholar 

  11. Rettallack, G. J. Soils of the Past: Introduction to Paleopedology (Unwin Hyman, Boston, 1990).

    Book  Google Scholar 

  12. Naraoka, H., Ohtake, M., Maruyama, S. & Ohmoto, H. Non-biogenic graphite in 3.8-Ga metamorphic rocks from the Isua District, Greenland. Chem. Geol. 133, 251–260 (1996).

    Article  Google Scholar 

  13. Watanabe, Y., Naraoka, H., Wronkiewicz, D. J., Condie, K. C. & Ohmoto, H. Carbon, nitrogen, and sulfur geochemistry of Archean and Proterozoic shales from the Kaapvaal Craton, South Africa. Geochim. Cosmochim. Acta 61, 3441–3459 (1997).

    Article  CAS  Google Scholar 

  14. Des Marais, D. J. Isotopic evolution of the biogeochemical carbon cycle during the Proterozoic eon. Org. Geochem. 27, 185–193 (1997).

    Article  CAS  Google Scholar 

  15. Des Marais, D. J., Bauld, J., Palmisano, A. C., Summons, R. E. & Ward, D. M. in Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 299–308 (Princeton Univ. Press, Lawrenceville, 1992).

    Google Scholar 

  16. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossil and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  CAS  Google Scholar 

  17. Campbell, S. E. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota. Origin of Life and Evolution of the Biosphere 9, 335–347 (1976).

    Article  Google Scholar 

  18. Nisbet, E. G. in Early Precambrian Processes (eds Coward, M. P. & Ries, A. C.) 27–51 (Special Publication, Geological Society of London, 1995).

    Google Scholar 

  19. Ohmoto, H. Evidence in pre-2.2 Ga paleosols for the early evolution of atmospheric oxygen and terrestrial biota. Geology 24, 1135–1138 (1996).

    Article  CAS  Google Scholar 

  20. Luque, F. J., Pasteris, J. D., Wopenka, B., Rodas, M. & Barrenechea, J. F. Natural fluid-deposited graphite: Mineralogical characteristics and mechanisms of formation. Am. J. Sci. 298, 471–498 (1998).

    Article  CAS  Google Scholar 

  21. Strauss, H. & Moore, T. B. in Proterozoic Biosphere: A Multidisciplinary Study (eds Schopf, J. W. & Klein, C.) 709–797 (Princeton Univ. Press, Lawrenceville, 1992).

    Book  Google Scholar 

  22. Ruttenberg, K. C. & Goni, M. A. Phosphorous distribution, C: N: P ratios, and δ13Coc in arctic, temperate, and tropical coastal sediments: tools for characterizing bulk sedimentary organic matter. Mar. Geol. 139, 123–145 (1997).

    Article  CAS  Google Scholar 

  23. Ohmoto, H. & Goldhaber, M. B. in Geochemistry of Hydrothermal Ore Deposits (ed. Barnes, H. L.) 517–612 (Wiley & Sons, New York, 1997).

    Google Scholar 

Download references

Acknowledgements

We thank T. Nagase for TEM analyses, L. R. Kump, J. F. Kasting, H. Naraoka, K. Yamaguchi, S. Ono, Y. Huang, K. M. Towe and J. A. Lamberski for comments on an earlier manuscript, and R. Capo, B. Stewart, D. J. Des Marais, R. Buick and J. M. Hayes for discussions. This work was supported by grants to H.O. from the Japanese Ministry of Science and Education, NSF and NASA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumiko Watanabe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, Y., Martini, J. & Ohmoto, H. Geochemical evidence for terrestrial ecosystems 2.6 billion years ago. Nature 408, 574–578 (2000). https://doi.org/10.1038/35046052

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046052

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing