Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconductivity at 52 K in hole-doped C60

A Retraction to this article was published on 06 March 2003

Abstract

Superconductivity in electron-doped C60 was first observed almost ten years ago. The metallic state and superconductivity result from the transfer of electrons from alkaline or alkaline-earth ions to the C60 molecule, which is known to be a strong electron acceptor. For this reason, it is very difficult to remove electrons from C60—yet one might expect to see superconductivity at higher temperatures in hole-doped than in electron-doped C60, because of the higher density of electronic states in the valence band than in the conduction band. We have used the technique of gate-induced doping in a field-effect transistor configuration to introduce significant densities of holes into C60. We observe superconductivity over an extended range of hole density, with a smoothly varying transition temperature Tc that peaks at 52 K. By comparison with the well established dependence of Tc on the lattice parameter in electron-doped C60, we anticipate that Tc values significantly in excess of 100 K should be achievable in a suitably expanded, hole-doped C60 lattice.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Channel resistance of a C60 single-crystal field-effect transistor.
Figure 2: Transition temperature Tc as a function of hole density for two samples.
Figure 3: Critical magnetic field Hc2 as a function of temperature.
Figure 4: Transition temperature and density of states as a function of charge per C60 molecule.
Figure 5: Resistivity of electron- and hole-doped C60 as a function of temperature.
Figure 6: Difference of the resistivity ρ and the residual resistivity ρo as a function of temperature.
Figure 7: Transition temperature in electron- and hole-doped C60 as function of lattice parameter.

Similar content being viewed by others

References

  1. Seitz, F. & Turnbull, D. Solid State Physics Vol. 48 (eds Ehrenreich, H. & Spaepen, F.) (Academic, San Diego, 1994).

    MATH  Google Scholar 

  2. Ramirez, A. P. C60 and its superconductivity. Supercond. Rev. 1, 1–101 (1994).

    CAS  Google Scholar 

  3. Gunnarsson, O. Superconductivity in fullerides. Rev. Mod. Phys. 69, 575–606 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Hebard, A. F. et al. Superconductivity at 18 K in potassium-doped C60. Nature 350, 600–601 (1991).

    Article  ADS  CAS  Google Scholar 

  5. Varma, C. M., Zaanen, J. & Raghavachari, K. Superconductivity in the fullerenes. Science 254, 989–992 (1991).

    Article  ADS  CAS  Google Scholar 

  6. Erwin, S. C. in Buckminsterfullerenes (eds Billups, W. E. & Ciufolini, M. A.) 217–255 (VCH, New York, 1992).

    Google Scholar 

  7. Haddon, R. C., Siegrist, T., Fleming, R. M., Bridenbaugh, P. M. & Laudise, R. A. Band structures of organic thin-film transistor materials. J. Mater. Chem. 5, 1719–1724 (1995).

    Article  CAS  Google Scholar 

  8. Mazin, I. I. et al. Quantitative theory of superconductivity in doped C60. Phys. Rev. B 45, 5114–5117 (1992).

    Article  ADS  CAS  Google Scholar 

  9. Hirsch, J. E. Bond-charge repulsion and hole superconductivity. Physica C 158, 326–336 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Haddon, R. C. The fullerenes : powerful carbon-based electron acceptors. Phil. Trans. R. Soc. Lond. A 343, 53–62 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Reed, C. A., Kim, K. C., Bolskar, R. D. & Mueller, L. J. Taming superacids : stabilization of the fullerene cations HC+60 and C·+60. Science 289, 101–104 (2000).

    Article  ADS  CAS  Google Scholar 

  12. Song, L. W., Fredette, K. T., Chung, D. D. L. & Kao, Y. H. Superconductivity in interhalogen-doped fullerenes. Solid State Commun. 87, 387–391 (1993).

    Article  ADS  CAS  Google Scholar 

  13. Schön, J. H., Kloc, Ch., Haddon, R. C. & Batlogg, B. A superconducting field-effect switch. Science 288, 656–658 (2000).

    Article  ADS  Google Scholar 

  14. Schön, J. H., Kloc, Ch. & Batlogg, B. Superconductivity in molecular crystals induced by charge injection. Nature 406, 704–706 (2000).

    Article  ADS  Google Scholar 

  15. Kochanski, G. P., Hebard, A. F., Haddon, R. C. & Fiory, A. T. Electrical resistivity and stoichiometry of KxC60 films. Science 255, 184–186 (1992).

    Article  ADS  CAS  Google Scholar 

  16. Rosseinsky, M. J. Recent developments in the chemistry and physics of metal fullerides. Chem. Mater. 10, 2665–2685 (1998).

    Article  CAS  Google Scholar 

  17. Han, J. E., Koch, E. & Gunnarsson, O. Metal-insulator transitions : influence of lattice structure, Jahn-Teller effect, and Hund's Rule coupling. Phys. Rev. Lett. 84, 1276–1279 (2000).

    Article  ADS  CAS  Google Scholar 

  18. Kloc, Ch., Simpkins, P. G., Siegrist, T. & Laudise, R. A. Physical vapor growth of centimeter-sized crystals of α-hexathiophene. J. Cryst. Growth 182, 416–427 (1997).

    Article  ADS  CAS  Google Scholar 

  19. Dodabalapur, A., Torsi, L. & Katz, H. E. Organic transistors : two-dimensional transport and improved electrical characteristics. Science 268, 270–271 (1995).

    Article  ADS  CAS  Google Scholar 

  20. Yildirim, T. et al. Tc vs. carrier concentration in cubic fulleride superconductors. Phys. Rev. Lett. 77, 167–170 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Heiney, P. A. et al. Discontinuous volume change at the orientational-ordering transition in solid C60. Phys. Rev. B 45, 4544–4547 (1992).

    Article  ADS  CAS  Google Scholar 

  22. Hesper, R., Tjeng, L. H., Heeres, A. & Sawatzky, G. A. BCS-like density of states in superconducting A3C60 surfaces. Phys. Rev. Lett. 85, 1970–1973 (2000).

    Article  ADS  CAS  Google Scholar 

  23. Klein, O., Grüner, G., Huang, S.-M., Wiley, J. B. & Kaner, R. B. Electrical resistivity of K3C60. Phys. Rev. B 46, 11247–11249 (1992).

    Article  ADS  CAS  Google Scholar 

  24. Crespi, V. H., Hou, J. G., Xiang, X.-D., Cohen, M. L. & Zettl, A. Electron-scattering mechanisms in single-crystal K3C60. Phys. Rev. B 46, 12064–12067 (1992).

    Article  ADS  CAS  Google Scholar 

  25. Vareka, W. A. & Zettl, A. Linear temperature dependent resistivity at constant volume in Rb3C60. Phys. Rev. Lett. 72, 4121–4124 (1994).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. A. Chandross and C. M. Varma for discussions, and E. Bucher for the use of his equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Batlogg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schön, J., Kloc, C. & Batlogg, B. Superconductivity at 52 K in hole-doped C60. Nature 408, 549–552 (2000). https://doi.org/10.1038/35046008

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35046008

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing